Keras-Text 项目教程
2024-09-18 12:50:42作者:何举烈Damon
1. 项目介绍
Keras-Text 是一个基于 Keras 框架的自然语言处理(NLP)工具包,旨在简化文本分类、序列标注等任务的实现。该项目提供了丰富的预处理工具、模型架构和训练方法,使得开发者能够快速构建和训练自己的 NLP 模型。
主要功能
- 文本预处理:提供了多种文本预处理工具,如分词、词干提取、词向量化等。
- 模型架构:支持多种经典的 NLP 模型架构,如 LSTM、GRU、CNN 等。
- 训练方法:提供了灵活的训练方法和评估指标,方便开发者进行模型调优。
2. 项目快速启动
安装
首先,确保你已经安装了 Keras 和 TensorFlow。然后,通过以下命令安装 Keras-Text:
pip install git+https://github.com/raghakot/keras-text.git
快速示例
以下是一个简单的文本分类示例,使用 Keras-Text 进行文本预处理和模型训练。
import keras
from keras_text.data_loaders import HierarchicalIterator
from keras_text.models import SentenceModelFactory
from keras_text.models.architectures import InceptionSentence
# 加载数据
data = [
{"text": "这是一个测试文本", "label": "测试"},
{"text": "这是一个训练文本", "label": "训练"},
# 更多数据...
]
# 文本预处理
tokenizer = keras.preprocessing.text.Tokenizer()
tokenizer.fit_on_texts([d["text"] for d in data])
# 创建数据迭代器
iterator = HierarchicalIterator(tokenizer, max_length=100)
X, y = iterator.fit_transform([d["text"] for d in data], [d["label"] for d in data])
# 定义模型
factory = SentenceModelFactory(num_classes=2, tokenizer=tokenizer, word_embed_dim=100)
model = factory.build_model(InceptionSentence)
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
3. 应用案例和最佳实践
文本分类
文本分类是 NLP 中最常见的任务之一。Keras-Text 提供了多种模型架构和预处理工具,使得文本分类任务变得简单高效。
from keras_text.models import SentenceModelFactory
from keras_text.models.architectures import InceptionSentence
factory = SentenceModelFactory(num_classes=2, tokenizer=tokenizer, word_embed_dim=100)
model = factory.build_model(InceptionSentence)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=10, batch_size=32)
序列标注
序列标注任务通常用于命名实体识别(NER)等场景。Keras-Text 提供了适合序列标注任务的模型架构。
from keras_text.models import SequenceModelFactory
from keras_text.models.architectures import BLSTM
factory = SequenceModelFactory(num_classes=2, tokenizer=tokenizer, word_embed_dim=100)
model = factory.build_model(BLSTM)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=10, batch_size=32)
4. 典型生态项目
Keras
Keras 是一个高层神经网络 API,能够运行在 TensorFlow、CNTK 或 Theano 之上。Keras-Text 是基于 Keras 开发的,充分利用了 Keras 的灵活性和易用性。
TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛应用于各种深度学习任务。Keras-Text 依赖于 TensorFlow 作为后端,提供了强大的计算能力。
SpaCy
SpaCy 是一个工业级的自然语言处理库,提供了丰富的 NLP 工具。Keras-Text 可以与 SpaCy 结合使用,进一步提升文本预处理和模型训练的效果。
通过这些生态项目的结合,Keras-Text 能够为开发者提供一个完整的 NLP 解决方案,帮助开发者快速构建和部署 NLP 应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
710
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460