Keras-Text 项目教程
2024-09-18 15:24:47作者:何举烈Damon
1. 项目介绍
Keras-Text 是一个基于 Keras 框架的自然语言处理(NLP)工具包,旨在简化文本分类、序列标注等任务的实现。该项目提供了丰富的预处理工具、模型架构和训练方法,使得开发者能够快速构建和训练自己的 NLP 模型。
主要功能
- 文本预处理:提供了多种文本预处理工具,如分词、词干提取、词向量化等。
- 模型架构:支持多种经典的 NLP 模型架构,如 LSTM、GRU、CNN 等。
- 训练方法:提供了灵活的训练方法和评估指标,方便开发者进行模型调优。
2. 项目快速启动
安装
首先,确保你已经安装了 Keras 和 TensorFlow。然后,通过以下命令安装 Keras-Text:
pip install git+https://github.com/raghakot/keras-text.git
快速示例
以下是一个简单的文本分类示例,使用 Keras-Text 进行文本预处理和模型训练。
import keras
from keras_text.data_loaders import HierarchicalIterator
from keras_text.models import SentenceModelFactory
from keras_text.models.architectures import InceptionSentence
# 加载数据
data = [
{"text": "这是一个测试文本", "label": "测试"},
{"text": "这是一个训练文本", "label": "训练"},
# 更多数据...
]
# 文本预处理
tokenizer = keras.preprocessing.text.Tokenizer()
tokenizer.fit_on_texts([d["text"] for d in data])
# 创建数据迭代器
iterator = HierarchicalIterator(tokenizer, max_length=100)
X, y = iterator.fit_transform([d["text"] for d in data], [d["label"] for d in data])
# 定义模型
factory = SentenceModelFactory(num_classes=2, tokenizer=tokenizer, word_embed_dim=100)
model = factory.build_model(InceptionSentence)
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
3. 应用案例和最佳实践
文本分类
文本分类是 NLP 中最常见的任务之一。Keras-Text 提供了多种模型架构和预处理工具,使得文本分类任务变得简单高效。
from keras_text.models import SentenceModelFactory
from keras_text.models.architectures import InceptionSentence
factory = SentenceModelFactory(num_classes=2, tokenizer=tokenizer, word_embed_dim=100)
model = factory.build_model(InceptionSentence)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=10, batch_size=32)
序列标注
序列标注任务通常用于命名实体识别(NER)等场景。Keras-Text 提供了适合序列标注任务的模型架构。
from keras_text.models import SequenceModelFactory
from keras_text.models.architectures import BLSTM
factory = SequenceModelFactory(num_classes=2, tokenizer=tokenizer, word_embed_dim=100)
model = factory.build_model(BLSTM)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=10, batch_size=32)
4. 典型生态项目
Keras
Keras 是一个高层神经网络 API,能够运行在 TensorFlow、CNTK 或 Theano 之上。Keras-Text 是基于 Keras 开发的,充分利用了 Keras 的灵活性和易用性。
TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛应用于各种深度学习任务。Keras-Text 依赖于 TensorFlow 作为后端,提供了强大的计算能力。
SpaCy
SpaCy 是一个工业级的自然语言处理库,提供了丰富的 NLP 工具。Keras-Text 可以与 SpaCy 结合使用,进一步提升文本预处理和模型训练的效果。
通过这些生态项目的结合,Keras-Text 能够为开发者提供一个完整的 NLP 解决方案,帮助开发者快速构建和部署 NLP 应用。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
236
2.35 K

仓颉编译器源码及 cjdb 调试工具。
C++
114
81

暂无简介
Dart
538
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
994
588

仓颉编程语言测试用例。
Cangjie
34
65

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
131
655