中心点重识别:基于Centroids-reid的图像检索实战指南
2024-09-24 18:08:49作者:咎岭娴Homer
1、项目介绍
中心点重识别(Centroids-reid) 是一个旨在提升时尚检索与行人重识别(ReID)任务表现的研究项目。作者提出了一种利用类中心点进行训练与检索的方法,该方法在保持计算效率的同时,有效解决了硬样本挖掘的难题。论文被ICONIP 2021会议接受,证明了其在图像检索领域的非同寻常的有效性。项目实现采用PyTorch Lightning框架,并提供了详细的配置选项及训练脚本。
2、项目快速启动
安装与准备
首先,确保你的环境中已经安装了Git和Python。然后,执行以下步骤:
# 克隆项目仓库
git clone https://github.com/mikwieczorek/centroids-reid.git
# 进入项目目录
cd centroids-reid
# 安装依赖包
pip install -r requirements.txt
接下来,下载预训练模型(以ResNet50为例):
# 下载模型权重到models文件夹
# 注意替换这里的[link]为你找到的实际链接
wget [link] -P models/
以及准备数据集,比如Market1501:
- 将数据集解压并重命名为
market1501放置在/data/路径下。 - 数据结构应遵循:
/data |- market1501 |- bounding_box_test/ |- bounding_box_train/
启动训练
以DukeMTMC-reID数据集上的CTL-Model为例,运行命令如下:
CUDA_VISIBLE_DEVICES=3 ./train_scripts/dukemtmc/train_ctl_model_s_r50_dukemtmc.sh
这将使用GPU编号3进行训练。你可以调整CUDA_VISIBLE_DEVICES指定不同的GPU或者移除此设置以使用默认配置。
3、应用案例和最佳实践
在完成模型训练后,测试或部署是评估效果的关键环节。例如,要对Market1501上训练的模型进行测试,使用如下命令:
python train_ctl_model.py \
--config_file="configs/256_resnet50.yml" \
GPU_IDS [0] \
DATASETS NAMES 'market1501' \
DATASETS ROOT_DIR '/data/' \
SOLVER IMS_PER_BATCH 16 \
TEST IMS_PER_BATCH 128 \
SOLVER BASE_LR 0.00035 \
OUTPUT_DIR './logs/market1501/256_resnet50/' \
SOLVER EVAL_PERIOD 40 \
TEST ONLY_TEST True \
MODEL PRETRAIN_PATH "./logs/market1501/256_resnet50/train_ctl_model/version_0/checkpoints/epoch=119.ckpt"
记得替换PRETRAIN_PATH为实际的模型检查点路径。
4、典型生态项目与集成
虽然该项目专注于行人重识别和时尚检索,它的原理和技术可以广泛应用于任何基于图像检索的场景,如商品推荐系统、监控视频分析等。开发者可以根据自身需求,借鉴其类中心点的策略,整合到其他计算机视觉库或框架中,如Fast-reID,以增强现有系统的性能。
为了更好地融入生态,理解其损失函数(如Centroid Triplet Loss)的设计思想,并尝试将其与其他先进技术(如Transformer架构)结合,可以推动该领域向更高精度和效率发展。
以上就是《中心点重识别:基于Centroids-reid的图像检索实战指南》的主要内容,希望对你深入理解和应用这一先进方法有所助益。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350