中心点重识别(Centroids-ReID)项目指南
2024-09-27 23:33:09作者:沈韬淼Beryl
1. 目录结构及介绍
该项目基于PyTorch-Lightning实现,以下是主要的目录结构及其简介:
callbacks: 包含自定义的回调函数,用于模型训练过程中的特定事件处理。config: 存放配置文件,定义了所有可调整的参数,如实验设置、路径等。configs: 提供默认的配置文件,每个.py文件对应一套不同的配置参数。datasets: 数据集相关的处理代码,包括数据加载器和预处理逻辑。inference: 推理脚本所在目录,用于模型测试或部署。losses: 定义损失函数,用于指导模型学习。modelling: 包含模型架构的定义,重点是Centroids相关的核心模型。scripts: 启动脚本和辅助脚本,如数据转换、训练和测试主程序。train_scripts: 按数据集和模型类型组织的训练脚本。dukemtmc: 专门用于DukeMTMC-reID的数据处理或训练脚本。scripts可能还包含其他通用脚本或数据准备工具。
solvers: 优化器和学习率调度相关的代码。train_scripts: 主训练脚本存放处,每个脚本负责特定训练流程。utils: 辅助功能模块,比如日志记录、文件操作等。.gitignore,LICENSE,README.md,requirements.txt: 标准Git忽略文件、许可证、项目说明文档和依赖包列表。
2. 项目的启动文件介绍
训练新模型
启动训练的主要入口位于train_scripts目录下。以训练CTL-Model在DukeMTMC-reID数据集上为例,你需要运行以下命令(确保已安装必要依赖且设置了正确的GPU可见性):
CUDA_VISIBLE_DEVICES=3 ./train_scripts/dukemtmc/train_ctl_model_s_r50_dukemtmc.sh
这会启动一个针对ResNet50的训练过程,使用指定的GPU设备。
测试已有模型
对于测试,可以在相应的训练脚本基础上修改参数以仅执行测试,例如:
python train_ctl_model.py \
--config_file="configs/256_resnet50.yml" \
GPU_IDS [0] \
DATASETS NAMES 'market1501' \
DATASETS ROOT_DIR '/data/' \
SOLVER IMS_PER_BATCH 16 \
TEST IMS_PER_BATCH 128 \
SOLVER BASE_LR 0.00035 \
OUTPUT_DIR './logs/market1501/256_resnet50/' \
SOLVER EVAL_PERIOD 40 \
TEST ONLY_TEST True \
MODEL PRETRAIN_PATH "logs/market1501/256_resnet50/train_ctl_model/version_0/checkpoints/epoch=119.ckpt"
3. 项目的配置文件介绍
配置文件通常位于config和configs目录,它们是控制模型训练和评估行为的关键。比如,configdefaults.py可能包含了所有可配置项的默认值。用户可以通过编辑这些.py文件来改变实验设置,如批次大小、学习率、模型参数等。每套配置文件代表了一组特定的实验条件,比如图像尺寸(256_resnet50.yml)会定义使用256x256尺寸的ResNet50进行训练的详细参数。
记得在开始任何训练或测试之前,详细审查对应的配置文件,以确保符合你的实验需求。通过合理调整这些配置,你可以针对不同任务和硬件资源定制化训练流程。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146