中心点重识别(Centroids-ReID)项目指南
2024-09-27 05:07:50作者:沈韬淼Beryl
1. 目录结构及介绍
该项目基于PyTorch-Lightning实现,以下是主要的目录结构及其简介:
callbacks
: 包含自定义的回调函数,用于模型训练过程中的特定事件处理。config
: 存放配置文件,定义了所有可调整的参数,如实验设置、路径等。configs
: 提供默认的配置文件,每个.py
文件对应一套不同的配置参数。datasets
: 数据集相关的处理代码,包括数据加载器和预处理逻辑。inference
: 推理脚本所在目录,用于模型测试或部署。losses
: 定义损失函数,用于指导模型学习。modelling
: 包含模型架构的定义,重点是Centroids相关的核心模型。scripts
: 启动脚本和辅助脚本,如数据转换、训练和测试主程序。train_scripts
: 按数据集和模型类型组织的训练脚本。dukemtmc
: 专门用于DukeMTMC-reID的数据处理或训练脚本。scripts
可能还包含其他通用脚本或数据准备工具。
solvers
: 优化器和学习率调度相关的代码。train_scripts
: 主训练脚本存放处,每个脚本负责特定训练流程。utils
: 辅助功能模块,比如日志记录、文件操作等。.gitignore
,LICENSE
,README.md
,requirements.txt
: 标准Git忽略文件、许可证、项目说明文档和依赖包列表。
2. 项目的启动文件介绍
训练新模型
启动训练的主要入口位于train_scripts
目录下。以训练CTL-Model在DukeMTMC-reID数据集上为例,你需要运行以下命令(确保已安装必要依赖且设置了正确的GPU可见性):
CUDA_VISIBLE_DEVICES=3 ./train_scripts/dukemtmc/train_ctl_model_s_r50_dukemtmc.sh
这会启动一个针对ResNet50的训练过程,使用指定的GPU设备。
测试已有模型
对于测试,可以在相应的训练脚本基础上修改参数以仅执行测试,例如:
python train_ctl_model.py \
--config_file="configs/256_resnet50.yml" \
GPU_IDS [0] \
DATASETS NAMES 'market1501' \
DATASETS ROOT_DIR '/data/' \
SOLVER IMS_PER_BATCH 16 \
TEST IMS_PER_BATCH 128 \
SOLVER BASE_LR 0.00035 \
OUTPUT_DIR './logs/market1501/256_resnet50/' \
SOLVER EVAL_PERIOD 40 \
TEST ONLY_TEST True \
MODEL PRETRAIN_PATH "logs/market1501/256_resnet50/train_ctl_model/version_0/checkpoints/epoch=119.ckpt"
3. 项目的配置文件介绍
配置文件通常位于config
和configs
目录,它们是控制模型训练和评估行为的关键。比如,configdefaults.py
可能包含了所有可配置项的默认值。用户可以通过编辑这些.py
文件来改变实验设置,如批次大小、学习率、模型参数等。每套配置文件代表了一组特定的实验条件,比如图像尺寸(256_resnet50.yml
)会定义使用256x256尺寸的ResNet50进行训练的详细参数。
记得在开始任何训练或测试之前,详细审查对应的配置文件,以确保符合你的实验需求。通过合理调整这些配置,你可以针对不同任务和硬件资源定制化训练流程。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
1.99 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

Ascend Extension for PyTorch
Python
36
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
515
45

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K