中心点重识别(Centroids-ReID)项目指南
2024-09-27 19:34:37作者:沈韬淼Beryl
1. 目录结构及介绍
该项目基于PyTorch-Lightning实现,以下是主要的目录结构及其简介:
callbacks: 包含自定义的回调函数,用于模型训练过程中的特定事件处理。config: 存放配置文件,定义了所有可调整的参数,如实验设置、路径等。configs: 提供默认的配置文件,每个.py文件对应一套不同的配置参数。datasets: 数据集相关的处理代码,包括数据加载器和预处理逻辑。inference: 推理脚本所在目录,用于模型测试或部署。losses: 定义损失函数,用于指导模型学习。modelling: 包含模型架构的定义,重点是Centroids相关的核心模型。scripts: 启动脚本和辅助脚本,如数据转换、训练和测试主程序。train_scripts: 按数据集和模型类型组织的训练脚本。dukemtmc: 专门用于DukeMTMC-reID的数据处理或训练脚本。scripts可能还包含其他通用脚本或数据准备工具。
solvers: 优化器和学习率调度相关的代码。train_scripts: 主训练脚本存放处,每个脚本负责特定训练流程。utils: 辅助功能模块,比如日志记录、文件操作等。.gitignore,LICENSE,README.md,requirements.txt: 标准Git忽略文件、许可证、项目说明文档和依赖包列表。
2. 项目的启动文件介绍
训练新模型
启动训练的主要入口位于train_scripts目录下。以训练CTL-Model在DukeMTMC-reID数据集上为例,你需要运行以下命令(确保已安装必要依赖且设置了正确的GPU可见性):
CUDA_VISIBLE_DEVICES=3 ./train_scripts/dukemtmc/train_ctl_model_s_r50_dukemtmc.sh
这会启动一个针对ResNet50的训练过程,使用指定的GPU设备。
测试已有模型
对于测试,可以在相应的训练脚本基础上修改参数以仅执行测试,例如:
python train_ctl_model.py \
--config_file="configs/256_resnet50.yml" \
GPU_IDS [0] \
DATASETS NAMES 'market1501' \
DATASETS ROOT_DIR '/data/' \
SOLVER IMS_PER_BATCH 16 \
TEST IMS_PER_BATCH 128 \
SOLVER BASE_LR 0.00035 \
OUTPUT_DIR './logs/market1501/256_resnet50/' \
SOLVER EVAL_PERIOD 40 \
TEST ONLY_TEST True \
MODEL PRETRAIN_PATH "logs/market1501/256_resnet50/train_ctl_model/version_0/checkpoints/epoch=119.ckpt"
3. 项目的配置文件介绍
配置文件通常位于config和configs目录,它们是控制模型训练和评估行为的关键。比如,configdefaults.py可能包含了所有可配置项的默认值。用户可以通过编辑这些.py文件来改变实验设置,如批次大小、学习率、模型参数等。每套配置文件代表了一组特定的实验条件,比如图像尺寸(256_resnet50.yml)会定义使用256x256尺寸的ResNet50进行训练的详细参数。
记得在开始任何训练或测试之前,详细审查对应的配置文件,以确保符合你的实验需求。通过合理调整这些配置,你可以针对不同任务和硬件资源定制化训练流程。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350