YOLOv3_TensorFlow 项目教程
2024-09-15 02:23:25作者:翟江哲Frasier
1. 项目目录结构及介绍
YOLOv3_TensorFlow/
├── data/
│ ├── darknet_weights/
│ ├── demo_data/
│ ├── my_data/
│ ├── coco.names
│ ├── yolo_anchors.txt
├── docs/
├── misc/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── args.py
├── convert_weight.py
├── eval.py
├── get_kmeans.py
├── model.py
├── test_single_image.py
├── train.py
└── video_test.py
目录结构介绍
-
data/: 存放数据文件的目录,包括预训练权重、演示数据、自定义数据集等。
- darknet_weights/: 存放从Darknet转换过来的TensorFlow权重文件。
- demo_data/: 存放演示用的图片和视频文件。
- my_data/: 存放自定义数据集的标注文件和类名文件。
- coco.names: COCO数据集的类名文件。
- yolo_anchors.txt: YOLOv3使用的锚点文件。
-
docs/: 存放项目文档的目录。
-
misc/: 存放一些辅助脚本的目录。
-
utils/: 存放工具函数的目录。
-
.gitignore: Git忽略文件配置。
-
LICENSE: 项目许可证文件。
-
README.md: 项目介绍和使用说明。
-
args.py: 配置参数文件。
-
convert_weight.py: 将Darknet权重转换为TensorFlow权重的脚本。
-
eval.py: 模型评估脚本。
-
get_kmeans.py: 使用K-means算法生成锚点文件的脚本。
-
model.py: YOLOv3模型的定义文件。
-
test_single_image.py: 单张图片测试脚本。
-
train.py: 模型训练脚本。
-
video_test.py: 视频测试脚本。
2. 项目启动文件介绍
train.py
train.py
是用于训练YOLOv3模型的启动文件。它包含了训练模型的完整流程,包括数据加载、模型构建、损失计算、优化器选择等。
主要功能
- 数据加载: 从指定路径加载训练数据和验证数据。
- 模型构建: 构建YOLOv3模型,并加载预训练权重(如果有)。
- 损失计算: 计算模型的损失函数,包括坐标损失、置信度损失和类别损失。
- 优化器选择: 选择合适的优化器进行模型训练,支持多种优化器(如Adam、SGD等)。
- 训练过程: 执行模型的训练过程,并定期保存模型权重。
test_single_image.py
test_single_image.py
是用于测试单张图片的启动文件。它加载训练好的模型,并对输入的图片进行目标检测。
主要功能
- 模型加载: 加载训练好的YOLOv3模型。
- 图片加载: 加载输入的图片文件。
- 目标检测: 对图片进行目标检测,并输出检测结果。
video_test.py
video_test.py
是用于测试视频的目标检测启动文件。它加载训练好的模型,并对输入的视频进行目标检测。
主要功能
- 模型加载: 加载训练好的YOLOv3模型。
- 视频加载: 加载输入的视频文件。
- 目标检测: 对视频的每一帧进行目标检测,并输出检测结果。
3. 项目的配置文件介绍
args.py
args.py
是项目的配置文件,包含了训练和测试过程中需要用到的各种参数。
主要配置项
-
训练参数:
train_file
: 训练数据文件路径。val_file
: 验证数据文件路径。restore_path
: 预训练权重文件路径。save_dir
: 模型权重保存路径。log_dir
: 日志文件保存路径。batch_size
: 批处理大小。img_size
: 输入图片尺寸。total_epoches
: 总训练轮数。learning_rate_init
: 初始学习率。lr_type
: 学习率调整策略(如cosine decay)。warm_up_epoch
: 预热轮数。
-
测试参数:
eval_file
: 评估数据文件路径。restore_path
: 加载的模型权重文件路径。batch_size
: 批处理大小。img_size
: 输入图片尺寸。nms_threshold
: 非极大值抑制阈值。score_threshold
: 置信度阈值。
通过修改args.py
中的参数,可以灵活调整训练和测试过程中的各种配置,以适应不同的任务需求。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
941
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
510
44

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.32 K

React Native鸿蒙化仓库
C++
194
279