YOLOv3_TensorFlow 项目教程
2024-09-15 00:11:29作者:翟江哲Frasier
1. 项目目录结构及介绍
YOLOv3_TensorFlow/
├── data/
│ ├── darknet_weights/
│ ├── demo_data/
│ ├── my_data/
│ ├── coco.names
│ ├── yolo_anchors.txt
├── docs/
├── misc/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── args.py
├── convert_weight.py
├── eval.py
├── get_kmeans.py
├── model.py
├── test_single_image.py
├── train.py
└── video_test.py
目录结构介绍
-
data/: 存放数据文件的目录,包括预训练权重、演示数据、自定义数据集等。
- darknet_weights/: 存放从Darknet转换过来的TensorFlow权重文件。
- demo_data/: 存放演示用的图片和视频文件。
- my_data/: 存放自定义数据集的标注文件和类名文件。
- coco.names: COCO数据集的类名文件。
- yolo_anchors.txt: YOLOv3使用的锚点文件。
-
docs/: 存放项目文档的目录。
-
misc/: 存放一些辅助脚本的目录。
-
utils/: 存放工具函数的目录。
-
.gitignore: Git忽略文件配置。
-
LICENSE: 项目许可证文件。
-
README.md: 项目介绍和使用说明。
-
args.py: 配置参数文件。
-
convert_weight.py: 将Darknet权重转换为TensorFlow权重的脚本。
-
eval.py: 模型评估脚本。
-
get_kmeans.py: 使用K-means算法生成锚点文件的脚本。
-
model.py: YOLOv3模型的定义文件。
-
test_single_image.py: 单张图片测试脚本。
-
train.py: 模型训练脚本。
-
video_test.py: 视频测试脚本。
2. 项目启动文件介绍
train.py
train.py
是用于训练YOLOv3模型的启动文件。它包含了训练模型的完整流程,包括数据加载、模型构建、损失计算、优化器选择等。
主要功能
- 数据加载: 从指定路径加载训练数据和验证数据。
- 模型构建: 构建YOLOv3模型,并加载预训练权重(如果有)。
- 损失计算: 计算模型的损失函数,包括坐标损失、置信度损失和类别损失。
- 优化器选择: 选择合适的优化器进行模型训练,支持多种优化器(如Adam、SGD等)。
- 训练过程: 执行模型的训练过程,并定期保存模型权重。
test_single_image.py
test_single_image.py
是用于测试单张图片的启动文件。它加载训练好的模型,并对输入的图片进行目标检测。
主要功能
- 模型加载: 加载训练好的YOLOv3模型。
- 图片加载: 加载输入的图片文件。
- 目标检测: 对图片进行目标检测,并输出检测结果。
video_test.py
video_test.py
是用于测试视频的目标检测启动文件。它加载训练好的模型,并对输入的视频进行目标检测。
主要功能
- 模型加载: 加载训练好的YOLOv3模型。
- 视频加载: 加载输入的视频文件。
- 目标检测: 对视频的每一帧进行目标检测,并输出检测结果。
3. 项目的配置文件介绍
args.py
args.py
是项目的配置文件,包含了训练和测试过程中需要用到的各种参数。
主要配置项
-
训练参数:
train_file
: 训练数据文件路径。val_file
: 验证数据文件路径。restore_path
: 预训练权重文件路径。save_dir
: 模型权重保存路径。log_dir
: 日志文件保存路径。batch_size
: 批处理大小。img_size
: 输入图片尺寸。total_epoches
: 总训练轮数。learning_rate_init
: 初始学习率。lr_type
: 学习率调整策略(如cosine decay)。warm_up_epoch
: 预热轮数。
-
测试参数:
eval_file
: 评估数据文件路径。restore_path
: 加载的模型权重文件路径。batch_size
: 批处理大小。img_size
: 输入图片尺寸。nms_threshold
: 非极大值抑制阈值。score_threshold
: 置信度阈值。
通过修改args.py
中的参数,可以灵活调整训练和测试过程中的各种配置,以适应不同的任务需求。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5