OS2D 项目使用教程
2024-09-19 09:52:48作者:虞亚竹Luna
1. 项目介绍
OS2D(One-Stage One-Shot Object Detection by Matching Anchor Features)是一个用于单次目标检测的开源项目。该项目通过匹配锚点特征来实现目标检测,特别适用于那些训练和测试中对象类别不重叠的情况。OS2D 提供了一个端到端的解决方案,能够在多个具有挑战性的领域(如零售产品、3D 对象、建筑和标志)中检测未见过的类别。
OS2D 的核心技术包括:
- 密集相关匹配的局部特征学习
- 前馈几何变换模型
- 双线性重采样相关张量
这些技术使得 OS2D 能够在单次检测中同时完成定位和识别任务,并且所有组件都是可微分的,支持端到端的训练。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境满足以下要求:
- Python >= 3.7
- PyTorch >= 1.4
- torchvision >= 0.5
- NVIDIA GPU(测试环境为 V100 和 GTX 1080 Ti)
- 已安装 CUDA(测试环境为 v10.0)
安装步骤
-
克隆项目仓库:
git clone https://github.com/aosokin/os2d.git cd os2d -
安装依赖包:
pip install -r requirements.txt -
下载预训练模型和数据集:
cd $OS2D_ROOT ./os2d/utils/wget_gdrive.sh models/os2d_v2-train.pth 1l_aanrxHj14d_QkCpein8wFmainNAzo8 ./os2d/utils/wget_gdrive.sh data/grozi.zip 1Fx9lvmjthe3aOqjvKc6MJpMuLF22I1Hp unzip data/grozi.zip -d data
快速运行示例
以下是一个快速运行的示例,用于在验证集上进行评估:
cd $OS2D_ROOT
python main.py --config-file experiments/config_training.yml \
model.use_inverse_geom_model True \
model.use_simplified_affine_model False \
model.backbone_arch ResNet50 \
train.do_training False \
eval.dataset_names "[\"grozi-val-new-cl\"]" \
eval.dataset_scales "[1280.0]" \
init.model models/os2d_v2-train.pth \
eval.scales_of_image_pyramid "[1.0]"
3. 应用案例和最佳实践
应用案例
OS2D 在多个领域展示了其强大的目标检测能力,以下是一些具体的应用案例:
- 零售产品检测:在零售场景中,OS2D 能够检测未见过的产品类别,如牙膏、饮料等。
- 3D 对象检测:在 3D 对象识别任务中,OS2D 能够准确地定位和识别复杂的 3D 模型。
- 建筑和标志检测:在建筑和标志识别任务中,OS2D 能够处理复杂的背景和光照条件。
最佳实践
- 数据集准备:确保数据集的标注准确且覆盖多种场景,以提高模型的泛化能力。
- 模型训练:使用预训练模型进行微调,可以显著提高检测精度。
- 多尺度评估:在评估时使用多尺度图像,可以提高检测的鲁棒性。
4. 典型生态项目
OS2D 作为一个开源项目,与其他相关项目形成了良好的生态系统,以下是一些典型的生态项目:
- PyTorch:OS2D 基于 PyTorch 框架开发,充分利用了 PyTorch 的灵活性和高效性。
- torchvision:torchvision 提供了丰富的图像处理工具,与 OS2D 结合使用可以进一步提升图像处理能力。
- NVIDIA GPU:OS2D 的训练和推理过程高度依赖于 NVIDIA GPU,特别是 V100 和 GTX 1080 Ti 等高性能显卡。
通过这些生态项目的支持,OS2D 能够在各种复杂场景中实现高效的目标检测。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
426
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
335
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
265
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
25
30