OS2D 项目使用教程
2024-09-19 16:40:47作者:虞亚竹Luna
1. 项目介绍
OS2D(One-Stage One-Shot Object Detection by Matching Anchor Features)是一个用于单次目标检测的开源项目。该项目通过匹配锚点特征来实现目标检测,特别适用于那些训练和测试中对象类别不重叠的情况。OS2D 提供了一个端到端的解决方案,能够在多个具有挑战性的领域(如零售产品、3D 对象、建筑和标志)中检测未见过的类别。
OS2D 的核心技术包括:
- 密集相关匹配的局部特征学习
- 前馈几何变换模型
- 双线性重采样相关张量
这些技术使得 OS2D 能够在单次检测中同时完成定位和识别任务,并且所有组件都是可微分的,支持端到端的训练。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境满足以下要求:
- Python >= 3.7
- PyTorch >= 1.4
- torchvision >= 0.5
- NVIDIA GPU(测试环境为 V100 和 GTX 1080 Ti)
- 已安装 CUDA(测试环境为 v10.0)
安装步骤
-
克隆项目仓库:
git clone https://github.com/aosokin/os2d.git cd os2d -
安装依赖包:
pip install -r requirements.txt -
下载预训练模型和数据集:
cd $OS2D_ROOT ./os2d/utils/wget_gdrive.sh models/os2d_v2-train.pth 1l_aanrxHj14d_QkCpein8wFmainNAzo8 ./os2d/utils/wget_gdrive.sh data/grozi.zip 1Fx9lvmjthe3aOqjvKc6MJpMuLF22I1Hp unzip data/grozi.zip -d data
快速运行示例
以下是一个快速运行的示例,用于在验证集上进行评估:
cd $OS2D_ROOT
python main.py --config-file experiments/config_training.yml \
model.use_inverse_geom_model True \
model.use_simplified_affine_model False \
model.backbone_arch ResNet50 \
train.do_training False \
eval.dataset_names "[\"grozi-val-new-cl\"]" \
eval.dataset_scales "[1280.0]" \
init.model models/os2d_v2-train.pth \
eval.scales_of_image_pyramid "[1.0]"
3. 应用案例和最佳实践
应用案例
OS2D 在多个领域展示了其强大的目标检测能力,以下是一些具体的应用案例:
- 零售产品检测:在零售场景中,OS2D 能够检测未见过的产品类别,如牙膏、饮料等。
- 3D 对象检测:在 3D 对象识别任务中,OS2D 能够准确地定位和识别复杂的 3D 模型。
- 建筑和标志检测:在建筑和标志识别任务中,OS2D 能够处理复杂的背景和光照条件。
最佳实践
- 数据集准备:确保数据集的标注准确且覆盖多种场景,以提高模型的泛化能力。
- 模型训练:使用预训练模型进行微调,可以显著提高检测精度。
- 多尺度评估:在评估时使用多尺度图像,可以提高检测的鲁棒性。
4. 典型生态项目
OS2D 作为一个开源项目,与其他相关项目形成了良好的生态系统,以下是一些典型的生态项目:
- PyTorch:OS2D 基于 PyTorch 框架开发,充分利用了 PyTorch 的灵活性和高效性。
- torchvision:torchvision 提供了丰富的图像处理工具,与 OS2D 结合使用可以进一步提升图像处理能力。
- NVIDIA GPU:OS2D 的训练和推理过程高度依赖于 NVIDIA GPU,特别是 V100 和 GTX 1080 Ti 等高性能显卡。
通过这些生态项目的支持,OS2D 能够在各种复杂场景中实现高效的目标检测。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
暂无简介
Dart
588
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
189
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
359
2.33 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
128
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
453
仓颉编程语言运行时与标准库。
Cangjie
130
468