深度3D人像重建从单张图片开始:基于sicxu/Deep3dPortrait的使用指南
2024-08-17 02:19:55作者:庞队千Virginia
1. 项目目录结构及介绍
该项目基于GitHub存储库 sicxu/Deep3dPortrait,致力于实现从单一肖像图像中恢复人头的3D几何形状。以下是该仓库的基本目录结构概览及其重要组成部分:
Deep3dPortrait/
├── README.md # 项目说明文档
├── requirements.txt # Python依赖包列表
├── step1_* # 步骤一的脚本,用于3D人脸重建
├── step2_* # 步骤二的脚本,涉及面部分割
├── step3_* # 步骤三的脚本,获取完整头部几何信息
├── step4_* # 步骤四的脚本,保存OBJ格式的结果
├── model # 预训练模型存放目录(需下载并放置相应的pb文件)
├── BFM # (需预先准备)BFM模型相关数据,用于人脸建模
└── output # 输出结果存放目录,每一步的处理结果将被放在相应的子目录下
- README.md 提供了基本的项目信息和快速入门指南。
- requirements.txt 列出了运行项目所需的Python库。
- 分步脚本 (
step1*,step2*,step3*,step4*) 是实现整个流程的关键,每个步骤负责特定的任务,如3D重建、面部区域分割、整体头部几何计算和最终的成果保存。
2. 项目启动文件介绍
启动此项目主要通过执行一系列的Python脚本来完成,而非传统的“单一启动文件”。以下是核心的启动脚本简介:
- step1_recon_3d_face.py:这是重建3D人脸的起始点,利用深度学习模型从输入图像估计人脸的3D形状。
- step2_face_segmentation.py:接下来进行面部区域的细分,帮助精确地识别面部与其他头部特征(如头发)的边界。
- step3_get_head_geometry.py:在此步骤中,结合之前的3D脸形信息,进一步估算头发和耳朵等非脸部区域的深度。
- step4_save_obj.py:最后,将重建的3D模型保存到OBJ格式文件,便于查看或在其他3D软件中使用。
要启动这些操作,您需要依次运行上述脚本,遵循项目的操作流程。
3. 项目的配置文件介绍
虽然直接的配置文件概念不那么明显,但项目的重要设置和路径主要通过代码内部定义和环境变量来管理:
- 环境配置:所有必要的Python依赖项在
requirements.txt文件中列出,通过pip安装这些依赖以确保项目运行环境正确。 - 模型路径:在运行前,需要手动下载预训练模型并将
.pb文件置于model目录内。此外,BFM模型的准备也是一个关键的前置条件,其路径和具体处理方法可能需要按照仓库中的指示进行配置。 - 数据和输出路径:项目在执行过程中,通过代码指定输入图片和输出结果的路径。这意味着,用户在调用脚本时,可能需要通过命令行参数或者在代码中直接修改这些路径,以适应个人的项目布局。
综上所述,尽管没有一个集中的配置文件,但通过脚本参数和外部资源的正确设置,可以灵活控制项目的运行逻辑和数据流。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
138
Ascend Extension for PyTorch
Python
163
183
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.15 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
255
90
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
644
255