Co-Mixup 开源项目使用教程
2024-09-14 09:01:21作者:吴年前Myrtle
1. 项目介绍
Co-Mixup 是一个用于深度学习的数据增强方法,旨在提高神经网络的泛化性能和鲁棒性。该项目由 JangHyun Kim、Wonho Choo、Hosan Jeong 和 Hyun Oh Song 开发,并在 ICLR 2021 会议上进行了口头报告。Co-Mixup 通过最大化数据显著性度量并鼓励超模多样性,提出了一种新的批量混合方法,从而在多个基准数据集上取得了最先进的性能。
2. 项目快速启动
2.1 环境准备
首先,确保你的环境中安装了以下依赖:
- Python 3.7.6
- PyTorch 1.7.0
- torchvision 0.8.1
- CUDA 11.1
- cuDNN 7.6.3
此外,还需要安装 gco-wrapper:
pip install gdown
pip install gco-wrapper
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/snu-mllab/Co-Mixup.git
cd Co-Mixup
2.3 下载预训练模型
下载预训练模型并解压到指定目录:
gdown https://drive.google.com/uc?id=1awBkSLxQKHUry-jkbDB1aMRBgIn5aT3F -O ./checkpoint/cifar100_preactresnet18_eph300_comixup/checkpoint.pth.tar
2.4 测试模型
运行以下命令测试模型:
python main.py --evaluate --log_off --parallel False --resume ./checkpoint/cifar100_preactresnet18_eph300_comixup/checkpoint.pth.tar --data_dir ./data/cifar100/
3. 应用案例和最佳实践
3.1 CIFAR-100 数据集上的应用
在 CIFAR-100 数据集上使用 Co-Mixup 进行训练:
python main.py --dataset cifar100 --data_dir ./data/cifar100/ --root_dir ./experiments/cifar100 --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --epochs 300 --schedule 100 200 --gammas 0.1 0.1 --comix True --parallel True --m_part 20 --m_block_num 4 --mixup_alpha 2.0 --clean_lam 1.0 --m_beta 0.32 --m_gamma 1.0 --m_thres 0.83 --m_eta 0.05 --m_omega 0.001
3.2 Tiny-ImageNet-200 数据集上的应用
在 Tiny-ImageNet-200 数据集上使用 Co-Mixup 进行训练:
python main.py --dataset tiny-imagenet-200 --data_dir ./data/tiny-imagenet-200 --root_dir ./experiments/tiny --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --workers 8 --comix True --parallel True --m_part 20 --m_block_num 4 --mixup_alpha 2.0 --clean_lam 1.0 --m_beta 0.32 --m_gamma 1.0 --m_thres 0.83 --m_eta 0.05 --m_omega 0.001
4. 典型生态项目
4.1 Puzzle Mix
Puzzle Mix 是另一个数据增强方法,与 Co-Mixup 类似,它也通过混合图像来提高模型的泛化能力。Puzzle Mix 的代码可以在 GitHub 上找到。
4.2 PyTorch
Co-Mixup 是基于 PyTorch 框架实现的,PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库来支持各种深度学习任务。
4.3 CIFAR-100 和 Tiny-ImageNet-200
CIFAR-100 和 Tiny-ImageNet-200 是常用的图像分类基准数据集,Co-Mixup 在这些数据集上进行了广泛的实验,证明了其有效性。
通过以上步骤,你可以快速上手使用 Co-Mixup 项目,并在不同的数据集上进行实验和应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143