Co-Mixup 开源项目使用教程
2024-09-14 21:28:21作者:吴年前Myrtle
1. 项目介绍
Co-Mixup 是一个用于深度学习的数据增强方法,旨在提高神经网络的泛化性能和鲁棒性。该项目由 JangHyun Kim、Wonho Choo、Hosan Jeong 和 Hyun Oh Song 开发,并在 ICLR 2021 会议上进行了口头报告。Co-Mixup 通过最大化数据显著性度量并鼓励超模多样性,提出了一种新的批量混合方法,从而在多个基准数据集上取得了最先进的性能。
2. 项目快速启动
2.1 环境准备
首先,确保你的环境中安装了以下依赖:
- Python 3.7.6
- PyTorch 1.7.0
- torchvision 0.8.1
- CUDA 11.1
- cuDNN 7.6.3
此外,还需要安装 gco-wrapper:
pip install gdown
pip install gco-wrapper
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/snu-mllab/Co-Mixup.git
cd Co-Mixup
2.3 下载预训练模型
下载预训练模型并解压到指定目录:
gdown https://drive.google.com/uc?id=1awBkSLxQKHUry-jkbDB1aMRBgIn5aT3F -O ./checkpoint/cifar100_preactresnet18_eph300_comixup/checkpoint.pth.tar
2.4 测试模型
运行以下命令测试模型:
python main.py --evaluate --log_off --parallel False --resume ./checkpoint/cifar100_preactresnet18_eph300_comixup/checkpoint.pth.tar --data_dir ./data/cifar100/
3. 应用案例和最佳实践
3.1 CIFAR-100 数据集上的应用
在 CIFAR-100 数据集上使用 Co-Mixup 进行训练:
python main.py --dataset cifar100 --data_dir ./data/cifar100/ --root_dir ./experiments/cifar100 --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --epochs 300 --schedule 100 200 --gammas 0.1 0.1 --comix True --parallel True --m_part 20 --m_block_num 4 --mixup_alpha 2.0 --clean_lam 1.0 --m_beta 0.32 --m_gamma 1.0 --m_thres 0.83 --m_eta 0.05 --m_omega 0.001
3.2 Tiny-ImageNet-200 数据集上的应用
在 Tiny-ImageNet-200 数据集上使用 Co-Mixup 进行训练:
python main.py --dataset tiny-imagenet-200 --data_dir ./data/tiny-imagenet-200 --root_dir ./experiments/tiny --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --workers 8 --comix True --parallel True --m_part 20 --m_block_num 4 --mixup_alpha 2.0 --clean_lam 1.0 --m_beta 0.32 --m_gamma 1.0 --m_thres 0.83 --m_eta 0.05 --m_omega 0.001
4. 典型生态项目
4.1 Puzzle Mix
Puzzle Mix 是另一个数据增强方法,与 Co-Mixup 类似,它也通过混合图像来提高模型的泛化能力。Puzzle Mix 的代码可以在 GitHub 上找到。
4.2 PyTorch
Co-Mixup 是基于 PyTorch 框架实现的,PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库来支持各种深度学习任务。
4.3 CIFAR-100 和 Tiny-ImageNet-200
CIFAR-100 和 Tiny-ImageNet-200 是常用的图像分类基准数据集,Co-Mixup 在这些数据集上进行了广泛的实验,证明了其有效性。
通过以上步骤,你可以快速上手使用 Co-Mixup 项目,并在不同的数据集上进行实验和应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134