Co-Mixup 项目使用教程
2024-09-18 13:56:38作者:俞予舒Fleming
1. 项目目录结构及介绍
Co-Mixup/
├── checkpoint/
│ └── cifar100_preactresnet18_eph300_comixup/
├── comix-imagenet/
├── comix-localization/
├── images/
├── models/
├── unittest/
├── .gitignore
├── LICENSE
├── README.md
├── Visualization.ipynb
├── load_data.py
├── logger.py
├── main.py
├── match.py
├── mixup.py
├── mixup_parallel.py
└── utils.py
目录结构介绍
- checkpoint/: 存放训练模型的检查点文件。
- comix-imagenet/: 用于ImageNet实验的代码。
- comix-localization/: 用于定位和鲁棒性实验的代码。
- images/: 存放项目相关的图片文件。
- models/: 存放模型定义的代码。
- unittest/: 存放单元测试代码。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- Visualization.ipynb: 用于数据可视化的Jupyter Notebook文件。
- load_data.py: 数据加载脚本。
- logger.py: 日志记录脚本。
- main.py: 项目的主启动文件。
- match.py: 匹配相关功能的脚本。
- mixup.py: Mixup数据增强的实现。
- mixup_parallel.py: 并行Mixup数据增强的实现。
- utils.py: 工具函数脚本。
2. 项目启动文件介绍
main.py
main.py
是项目的启动文件,负责训练和测试模型的主要逻辑。以下是该文件的主要功能:
- 训练模型: 通过调用不同的模型和数据增强方法进行模型训练。
- 测试模型: 加载预训练模型并进行测试。
- 参数配置: 通过命令行参数配置训练和测试的各项参数。
使用示例
python main.py --dataset cifar100 --data_dir /data/cifar100/ --root_dir /experiments/cifar100 --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --epochs 300 --schedule 100 200 --gammas 0.1 0.1 --comix True --parallel True --m_part 20 --m_block_num 4 --mixup_alpha 2.0 --clean_lam 1.0 --m_beta 0.32 --m_gamma 1.0 --m_thres 0.83 --m_eta 0.05 --m_omega 0.001
3. 项目的配置文件介绍
命令行参数配置
main.py
通过命令行参数进行配置,以下是一些常用的参数:
- --dataset: 指定数据集,如
cifar100
或tiny-imagenet-200
。 - --data_dir: 数据集的存储路径。
- --root_dir: 实验结果的存储路径。
- --labels_per_class: 每个类别的训练数据量。
- --arch: 使用的模型架构,如
preactresnet18
。 - --learning_rate: 学习率。
- --epochs: 训练的轮数。
- --schedule: 学习率调整的轮数。
- --gammas: 学习率调整的倍数。
- --comix: 是否使用Co-Mixup数据增强。
- --parallel: 是否使用并行处理。
- --m_part: Mixup分区的数量。
- --m_block_num: Mixup块的数量。
- --mixup_alpha: Mixup的alpha参数。
- --clean_lam: 清洁输入的正则化参数。
- --m_beta: Mixup的beta参数。
- --m_gamma: Mixup的gamma参数。
- --m_thres: Mixup的阈值参数。
- --m_eta: Mixup的eta参数。
- --m_omega: Mixup的omega参数。
通过这些参数,用户可以灵活配置训练和测试的各项设置。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4