**Open-DocLLM:智能文档处理的新篇章**
2024-05-31 03:09:52作者:秋泉律Samson
Open-DocLLM:智能文档处理的新篇章
项目介绍
欢迎来到Open-DocLLM的世界,这是一个专为高效、灵活的智能文档提取和处理而设计的库。借助大型语言模型(LLMs),无论是从图像文件还是文本文档中,都能轻松提取关键信息,使得数据挖掘工作变得更加简单。该项目提供了一种ORM式的交互方式,使开发者可以像操作数据库对象一样与文件和LLMs进行交互。
项目技术分析
Open-DocLLM的核心在于其模块化的基础设施,受到LangChain生态系统启发。它支持多种文档加载器,如Tesseract OCR、Azure Form Recognizer、AWS TextExtract和Google Document AI,确保了对不同格式和来源的文档处理能力。此外,通过定义合同(Contract)类,用户可以根据需求定制提取规则,实现结构化数据的精准抽取。
项目还引入了异步处理功能,优化了大规模文档处理时的性能。不仅如此,Open-DocLLM还可以将大文件分割并分类,以便于使用不同的合同进行处理,提高了工作效率。
应用场景
Open-DocLLM适用于广泛的场景:
- 发票自动化处理 - 自动提取发票中的编号、日期等信息,加速财务流程。
- 身份证件识别 - 快速识别驾照、护照等证件的关键信息,简化身份验证过程。
- 合同解析 - 提取合同中的关键条款、日期和其他重要细节,助力法律团队的工作。
- 大数据分析 - 在研究领域,自动提取文献中的关键信息,用于学术数据分析。
项目特点
- 多平台兼容 - 支持多种流行的OCR工具和云服务,适应性强。
- 可扩展性 - 灵活的合同定义允许添加新的数据类型和字段,满足不断变化的需求。
- 高效异步处理 - 通过异步API提升批处理速度,提高整体系统吞吐量。
- ORM风格接口 - 易于理解和使用的代码结构,降低开发难度。
- 模块化设计 - 允许方便地替换或扩展组件,以适应特定的业务逻辑。
加入Open-DocLLM的旅程
Open-DocLLM不仅是提取数据的工具,更是智能化文档处理的推动者。无论你是初创公司还是大型企业,无论你的目标是优化内部流程还是创新服务,这个库都是值得信赖的盟友。立即安装,并探索更多可能,让Open-DocLLM帮助你开启智能文档处理的新篇章。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137