DeepGEMM项目中分组GEMM的M维度对齐要求解析
2025-06-08 00:50:18作者:谭伦延
背景介绍
DeepGEMM是一个高性能的矩阵乘法计算库,针对现代GPU架构进行了深度优化。在最新版本中,该项目实现了分组GEMM(Grouped GEMM)功能,允许同时处理多个不同尺寸的矩阵乘法运算。这种功能在深度学习和大规模科学计算中尤为重要,特别是在处理不规则批次数据时。
分组GEMM的两种布局
DeepGEMM目前支持两种分组GEMM布局:
- 连续布局(Contiguous Layout):所有矩阵在内存中连续存储
- 掩码布局(Masked Layout):支持更灵活的内存布局
M维度对齐要求
连续布局的对齐限制
对于连续布局的分组GEMM实现,库明确要求每个分组的M维度必须对齐到128的倍数。这一要求源于底层硬件优化考虑,特别是为了充分利用GPU的Tensor Memory Access(TMA)特性。
这种对齐要求确保了:
- 内存访问的高效性
- 计算单元的最佳利用率
- 避免跨边界的内存访问
掩码布局的对齐问题
虽然掩码布局在理论上没有硬性的对齐要求,但在实际测试中发现,当M维度小于或不能整除BLOCK_M(通常为128)时,计算结果会出现错误。这主要是由于TMA存储块大小处理不当导致的。
技术原理分析
TMA(张量内存访问)的影响
TMA是现代GPU中用于高效数据传输的重要特性。在DeepGEMM的实现中:
- 对于连续布局,使用2D TMA存储结构
[num_groups * m, k] - 这种结构要求严格的对齐,否则会导致组间数据覆盖
性能与灵活性的权衡
当前实现选择限制M维度的灵活性是为了获得最佳性能表现。理论上可以通过以下方式突破限制:
- 使用3D TMA结构
[num_groups, m, k] - 引入额外的参数指示每组的数据地址
但这些方案会带来:
- 实现复杂度增加
- 潜在的性能下降
- 对罕见用例的支持成本
实际应用建议
对于需要使用分组GEMM的开发者:
- 尽量调整M维度为128的倍数
- 如果必须使用不规则尺寸,考虑:
- 填充数据以满足对齐要求
- 分批处理不同尺寸的矩阵
- 权衡灵活性和性能需求
未来优化方向
DeepGEMM团队可能会考虑:
- 对特殊尺寸的优化处理
- 更灵活的内存布局支持
- 自动填充和对齐功能
这些优化将进一步提升库的易用性和适用范围,同时保持高性能计算的核心优势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110