ContainerDNS 开源项目教程
1. 项目介绍
ContainerDNS 是一个专为 Kubernetes 集群设计的高性能内部 DNS 服务器。它通过提供快速的 DNS 查询服务,帮助 Kubernetes 集群中的容器和服务之间进行高效的域名解析。ContainerDNS 包括以下主要组件:
- containerdns: 主要服务,提供 DNS 查询功能。
- containerdns-kubeapi: 监控 Kubernetes 服务的变化,并将变化记录在 etcd 中。
- containerdns-apicmd: 用户查询和更新域名记录的命令行工具。
- etcd: 存储 DNS 信息的数据库。
ContainerDNS 的特点包括:
- 支持多域名解析
- 使用缓存提升解析效率
- 自动移除不可用的 IP
- 支持负载均衡和会话持久化
2. 项目快速启动
2.1 环境准备
确保你的系统已经安装了 Go 语言环境,并且设置了 $GOPATH
。
2.2 下载和编译项目
mkdir -p $GOPATH/src/github.com/tiglabs
cd $GOPATH/src/github.com/tiglabs
git clone https://github.com/tiglabs/containerdns.git
cd containerdns
make
2.3 配置文件
ContainerDNS 的配置文件位于 /etc/containerdns/containerdns.conf
。以下是一个示例配置文件:
[Dns]
dns-domain = containerdns.local
dns-addr = 0.0.0.0:53
nameservers = ""
subDomainServers = ""
cacheSize = 100000
ip-monitor-path = /containerdns/monitor/status/
[Log]
log-dir = /export/log/containerdns
log-level = 2
log-to-stdio = true
[Etcd]
etcd-servers = http://127.0.0.1:2379
etcd-certfile = ""
etcd-keyfile = ""
etcd-cafile = ""
[Fun]
random-one = false
hone-one = false
[Stats]
statsServer = 127.0.0.1:9600
statsServerAuthToken = @containerdns.com
2.4 启动服务
nohup ./bin/containerdns -config-file /etc/containerdns/containerdns.conf &> /tmp/containerdns.log &
3. 应用案例和最佳实践
3.1 多集群 DNS 解析
ContainerDNS 支持多个 Kubernetes 集群的 DNS 解析,通过将多个集群的 DNS 请求转发到同一个 ContainerDNS 实例,可以实现跨集群的域名解析。
3.2 高性能 DNS 查询
通过使用缓存和高效的 etcd 存储,ContainerDNS 能够处理高达 1000 万 QPS 的 DNS 查询请求,适用于大规模 Kubernetes 集群。
3.3 负载均衡和会话持久化
ContainerDNS 支持负载均衡和会话持久化,确保在多 IP 情况下,能够随机选择一个可用的 IP 进行解析,并且在同一源多次访问时返回相同的 IP。
4. 典型生态项目
4.1 Kubernetes
ContainerDNS 是 Kubernetes 集群的理想 DNS 解决方案,能够与 Kubernetes 的 Service 和 Pod 无缝集成,提供高效的域名解析服务。
4.2 etcd
ContainerDNS 使用 etcd 作为后端存储,etcd 的高可用性和一致性保证了 ContainerDNS 的稳定性和可靠性。
4.3 DPDK
通过使用 DPDK 技术,ContainerDNS 的吞吐量可以进一步提升到接近 1000 万 QPS,适用于对性能要求极高的场景。
通过以上步骤,你可以快速启动并使用 ContainerDNS 项目,享受其带来的高性能和稳定性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









