Sentence-Transformers中NoDuplicatesBatchSampler的采样顺序问题分析
背景介绍
在自然语言处理领域,Sentence-Transformers是一个广泛使用的框架,用于生成高质量的句子嵌入表示。在该框架中,NoDuplicatesBatchSampler是一个重要的组件,负责在训练过程中生成不含重复样本的批次数据。
问题发现
近期在使用过程中发现,NoDuplicatesBatchSampler存在一个潜在的问题:它在不同训练周期(epoch)中会产生完全相同的批次顺序。这违背了深度学习训练中期望的数据随机性,可能会影响模型的训练效果。
技术分析
问题的根源在于采样器的实现细节:
-
随机种子固定:采样器使用了固定的随机种子,而没有随着训练周期变化而更新。虽然框架提供了set_epoch方法来设置周期索引,但由于accelerate库的实现限制,该方法没有被正确传播到批次采样器层面。
-
集合操作问题:在实现中使用了Python的set数据结构来存储剩余索引。虽然set提供了高效的成员查询和删除操作,但它不保证元素的顺序性。特别是在Python 3.7+版本中,虽然dict保持了插入顺序,但set仍然不保证顺序。
解决方案探讨
针对上述问题,社区讨论了几种可能的解决方案:
-
使用有序字典结构:建议将remaining_indices从set改为OrderedDict或普通dict。在Python 3.7+中,普通dict已经保持了插入顺序,可以作为替代方案。虽然这会带来轻微的性能开销,但可以保证采样顺序的正确性。
-
修复随机种子传播:需要在accelerate库层面进行修改,确保set_epoch方法能够正确传播到批次采样器层面。这将解决不同周期采样顺序相同的问题。
实现建议
对于需要立即解决问题的用户,可以考虑以下临时解决方案:
- 修改NoDuplicatesBatchSampler的实现,使用dict代替set来存储remaining_indices
- 手动在每个训练周期开始时重置采样器的随机状态
- 考虑实现自定义的批次采样逻辑,确保数据的充分随机性
总结
Sentence-Transformers框架中的NoDuplicatesBatchSampler在数据采样顺序上存在潜在问题,这可能会影响模型训练效果。通过使用有序数据结构并修复随机种子传播机制,可以解决这一问题。对于深度学习实践者来说,理解数据采样机制对模型训练的影响至关重要,特别是在处理大规模数据集时。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00