使用Sentence Transformers处理多正例负例训练数据的技巧
2025-05-13 18:55:21作者:龚格成
在自然语言处理领域,Sentence Transformers是一个强大的框架,用于训练高质量的句子嵌入模型。在实际应用中,我们经常会遇到一个查询(query)对应多个正例(positive)和多个负例(negative)的训练数据场景。本文将深入探讨如何有效处理这类数据,特别是当使用Multiple Negatives Ranking (MNR)损失函数时的最佳实践。
训练数据的基本结构
典型的训练数据可能呈现如下格式:
query, [positive1, positive2], [negative1, negative2, negative3, negative4, negative5]
其中positive1和positive2是与查询相关的文档(被点击),而negative1到negative5则是与查询不相关的文档(未被点击)。
数据转换的直观方法
当使用MNR损失函数时,我们需要将每个正例单独与所有负例配对。这会产生如下记录:
记录1: query, positive1, [negative1, negative2, negative3, negative4, negative5]
记录2: query, positive2, [negative1, negative2, negative3, negative4, negative5]
潜在的问题与挑战
这种转换方式虽然直观,但在训练过程中可能会遇到一个关键问题:如果转换后的两条记录恰好在同一个训练批次(batch)中出现,模型会将positive2误认为negative1的负例,反之亦然。这种"误伤"会降低训练效果,因为实际上这些文档都是与查询相关的正例。
解决方案:NoDuplicatesBatchSampler
Sentence Transformers提供了一个优雅的解决方案——NoDuplicatesBatchSampler。这个批采样器的工作原理如下:
- 随机遍历所有样本
- 动态检查每个样本是否应该包含在当前批次中
- 维护一个已包含在当前批次中的所有文本的集合
- 如果候选样本包含任何已在批次中的文本,则跳过该样本(仅针对当前批次)
- 被跳过的样本可以在后续批次中重新考虑
实施建议
为了有效利用这一技术,建议:
- 保持原始数据格式为7列(查询、正例和多个负例)
- 在训练配置中启用NoDuplicatesBatchSampler
- 确保训练数据量足够大,减少样本间的重叠
- 监控训练过程中的批次构成,确保没有意外的正例被当作负例
性能考量
使用NoDuplicatesBatchSampler时需要注意:
- 数据量越大,批次构建的效率越高
- 样本间重叠越少,批次构建越容易
- 可能需要调整批次大小以获得最佳效果
通过这种方法,我们可以在不损失任何训练信息的前提下,有效避免正例被误认为负例的问题,从而训练出更高质量的嵌入模型。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0