Awesome VLM 架构指南
项目介绍
Awesome VLM 架构 是一个详尽的资源库,致力于汇总并解析著名的视觉语言模型(Vision-Language Models, VLMs)及其架构设计。该仓库由 gokayfem 维护,旨在为研究人员和开发者提供一个平台,深入了解这些模型如何通过结合图像和文本数据来关联视觉语义与文本表示。模型覆盖了从架构设计到训练流程,以及用于训练的数据集等方面,其中特别强调如 LLaVA 和 MiniGPT-v2 这样的前沿作品。
项目快速启动
要开始探索这些惊人的视觉语言模型,首先确保你的开发环境已安装 Git 和 Python。以下步骤将指导你克隆此仓库并初步了解其结构:
# 克隆项目到本地
git clone https://github.com/gokayfem/Awesome-VLM-Architectures.git
# 进入项目目录
cd Awesome-VLM-Architectures
# 查看项目简介或相关说明文件(如果有)
cat README.md
请注意,实际使用特定模型时,可能还需要安装对应的依赖库及预训练模型。具体步骤应参照各个模型子目录下的说明文档。
应用案例和最佳实践
在 Examples 或相应模型文件夹中,寻找示例代码和实践指南,理解如何将这些模型应用于图像识别、文本生成、视觉问答等场景。例如,对于 LLaVA,你可以查看其如何通过视觉指令调用模型执行任务的示例脚本。最佳实践通常包括如何微调模型以适应特定领域数据和优化模型性能的建议。
典型生态项目
这个项目本身就是一个典型生态的一部分,它不仅介绍了模型架构,也为社区贡献者提供了模板。开发者可以通过贡献自己的案例研究、改进现有文档或者添加新的VLM模型详情来丰富这一生态。例如,如果你在自然语言处理或计算机视觉项目中成功运用了某个VLM,分享你的集成经验和效果,可以极大地帮助其他开发者理解和应用这些复杂的技术。
为了进一步参与生态,开发者应遵循仓库中的 CONTRIBUTING.md 文件指引,提交PR(拉取请求),以便共享知识和经验。
本指南仅为入门级概述,深入学习每一款模型的细节和实现方法,请务必参考仓库内的详细文档和社区论坛讨论。通过不断学习和实践,你会发现这些模型在跨学科应用中的无限潜力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00