PyTorch教程中关于逐样本梯度计算的正确实现方式
2025-05-27 10:17:43作者:滕妙奇
在PyTorch的官方教程中,有一个关于逐样本梯度(per-sample gradient)计算的示例代码存在一个容易引起误解的实现问题。这个问题涉及到神经网络输出层的处理方式,特别是分类任务中常见的logits和概率分布转换。
问题背景
在分类任务中,神经网络的最后一层通常会输出未经归一化的logits值。为了计算交叉熵损失,我们需要先将这些logits转换为概率分布。PyTorch提供了两种主要方式:
- 先使用log_softmax转换,再使用nll_loss计算负对数似然损失
- 直接使用cross_entropy损失函数,它内部会自动进行log_softmax转换
原教程代码的问题
原教程中的网络定义部分存在一个逻辑问题:它先对输出应用了log_softmax,但在计算损失时又直接使用了nll_loss而没有再次进行log_softmax转换。这会导致两个问题:
- 重复应用log_softmax会导致数值计算不正确
- 与PyTorch常规的logits处理方式不一致,容易误导初学者
正确的实现方式
正确的实现应该采用以下两种方式之一:
- 在网络前向传播中不进行任何softmax转换,保持输出为logits,然后在损失计算时使用cross_entropy:
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return x # 保持为logits
def compute_loss(self, predictions, targets):
return F.cross_entropy(predictions, targets)
- 或者明确地在网络中进行log_softmax转换,然后在损失计算时使用nll_loss:
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return F.log_softmax(x, dim=-1) # 转换为log概率
def compute_loss(self, predictions, targets):
return F.nll_loss(predictions, targets)
为什么这很重要
在逐样本梯度计算中,正确的损失计算方式尤为重要,因为:
- 梯度计算依赖于损失函数的正确实现
- 错误的softmax应用会导致梯度值不正确
- 在模型解释性和调试时,清晰的logits处理流程非常重要
最佳实践建议
对于PyTorch中的分类任务,推荐的做法是:
- 保持网络输出为原始logits
- 使用F.cross_entropy作为损失函数
- 只在需要解释或可视化时才显式地进行softmax转换
这种做法不仅更简洁,而且与PyTorch的大多数预训练模型和库的默认行为保持一致,减少了出错的可能性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.19 K

暂无简介
Dart
516
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193