GLM-4模型微调过程中的Loss异常问题分析与解决方案
2025-06-03 22:25:16作者:冯梦姬Eddie
问题背景
在使用GLM-4-9b-chat-hf大语言模型进行微调时,开发者遇到了一个典型的技术问题:当设置batch_size为1时训练正常进行,但当增大batch_size后出现eval_loss为NaN的情况,同时伴随着显存不断增长直至内存溢出的现象。这类问题在大型语言模型微调过程中并不罕见,值得深入分析和总结。
问题现象的具体表现
- 正常情况:当per_device_train_batch_size=1时,训练过程稳定,loss正常下降,显存占用维持在20-25GB之间
- 异常情况:当增大batch_size到2或更大时:
- 评估损失(eval_loss)变为NaN
- 显存占用持续增长
- 最终导致内存不足错误(Out of Memory)
技术分析
可能的原因排查
- 数据类型问题:模型加载时使用了torch.bfloat16半精度,可能与某些操作不兼容
- 梯度计算异常:batch_size增大后梯度计算可能出现数值不稳定
- 框架版本兼容性:使用的PyTorch 2.5.0可能存在与GLM-4模型的兼容性问题
- 内存管理问题:batch_size增大后显存管理可能出现异常
关键发现
经过实践验证,问题的根本原因在于PyTorch版本兼容性。具体表现为:
- PyTorch 2.5.0环境下出现上述异常
- 降级到PyTorch 2.4.1后问题得到解决
解决方案
推荐方案
-
PyTorch版本降级:将PyTorch从2.5.0降级到2.4.1版本
pip install torch==2.4.1 -
其他兼容性检查:
- 确保CUDA版本(11.8)与PyTorch版本匹配
- 检查transformers库版本(4.48.0)是否与模型要求一致
替代方案
如果无法降级PyTorch版本,可以尝试以下方法:
-
调整训练参数:
- 使用更小的学习率
- 启用梯度裁剪
- 尝试不同的优化器
-
内存优化技术:
- 启用梯度检查点(gradient checkpointing)
- 使用更高效的优化器如Adafactor
- 考虑使用DeepSpeed等内存优化技术
最佳实践建议
-
版本控制:在微调大型语言模型时,严格遵循官方推荐的软件版本组合
-
逐步测试:从小的batch_size开始,逐步增加并监控资源使用情况
-
监控机制:实现训练过程的实时监控,包括:
- loss变化曲线
- 显存占用情况
- 梯度数值范围
-
异常处理:在训练脚本中加入对NaN值的检测和相应处理机制
技术原理延伸
为什么PyTorch版本会导致这样的问题?可能涉及以下深层次原因:
- 计算图优化差异:不同PyTorch版本对计算图的优化策略可能不同,影响大batch下的数值稳定性
- 内存管理改进:新版本可能引入了不同的内存管理机制,与某些模型结构不兼容
- 算子实现变化:底层算子的实现方式变化可能导致数值精度差异
对于大型语言模型的微调,这种版本间的细微差异可能被放大,导致训练不稳定现象。
总结
GLM-4这类大型语言模型的微调过程中,软件环境配置的细微差别可能导致显著影响。本文分析的batch_size增大后出现NaN loss的问题,通过PyTorch版本降级得到解决,为类似场景提供了有价值的参考。在实际应用中,建议开发者:
- 严格遵循官方文档的环境要求
- 建立完善的训练监控机制
- 对关键参数进行充分的测试验证
- 保持对深度学习框架版本兼容性的关注
这些实践不仅能解决当前问题,也能预防其他潜在的技术风险,确保大型语言模型微调过程的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1