EAGLE 项目使用教程
1. 项目介绍
EAGLE(Extrapolation Algorithm for Greater Language-model Efficiency)是一个用于加速大型语言模型(LLMs)解码的新基准方法。EAGLE 通过外推 LLMs 的第二层上下文特征向量,显著提高了生成效率。EAGLE 不仅在速度上表现出色,还通过第三方评估认证为目前最快的推测方法之一,并且在生成文本的分布上保持了与传统解码方法的一致性。
EAGLE 项目由 SafeAILab 开发,提供了 EAGLE-1 和 EAGLE-2 的官方实现。EAGLE-2 进一步利用草稿模型的置信度分数来动态调整草稿树结构,从而进一步提升了性能。
2. 项目快速启动
安装与配置
首先,克隆 EAGLE 项目的 GitHub 仓库:
git clone https://github.com/SafeAILab/EAGLE.git
cd EAGLE
安装项目所需的依赖:
pip install -r requirements.txt
使用 EAGLE 进行推理
以下是一个使用 EAGLE 进行推理的示例代码:
from eagle.model.ea_model import EaModel
from fastchat.model import get_conversation_template
# 加载 EAGLE 模型
model = EaModel.from_pretrained(
base_model_path="path_to_base_model",
ea_model_path="path_to_EAGLE_model",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
total_token=-1
)
model.eval()
# 准备输入消息
your_message = "Hello"
conv = get_conversation_template("vicuna")
conv.append_message(conv.roles[0], your_message)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# 生成输入 ID
input_ids = model.tokenizer([prompt]).input_ids
input_ids = torch.as_tensor(input_ids).cuda()
# 使用 EAGLE 生成输出
output_ids = model.eagenerate(input_ids, temperature=0.5, max_new_tokens=512)
output = model.tokenizer.decode(output_ids[0])
print(output)
3. 应用案例和最佳实践
案例1:加速大型语言模型推理
EAGLE 可以显著加速大型语言模型的推理过程。例如,在 GPT-fast 上,EAGLE 实现了 2 倍的加速,比传统的解码方法快 3 倍。
案例2:结合其他并行技术
EAGLE 可以与其他并行技术(如 vLLM、DeepSpeed、Mamba、FlashAttention、量化和硬件优化)结合使用,进一步提高推理速度。
最佳实践
- 选择合适的模型:根据任务需求选择合适的 EAGLE 模型版本(EAGLE-1 或 EAGLE-2)。
- 调整参数:根据硬件设备和模型大小,调整
total_token参数以获得最佳性能。 - 结合其他优化技术:结合 vLLM、DeepSpeed 等技术,进一步优化推理速度。
4. 典型生态项目
vLLM
vLLM 是一个用于加速大型语言模型推理的并行框架。EAGLE 与 vLLM 结合使用,可以进一步提高推理速度。
DeepSpeed
DeepSpeed 是一个用于加速深度学习训练和推理的框架。EAGLE 可以与 DeepSpeed 结合使用,优化大型语言模型的推理性能。
Mamba
Mamba 是一个用于加速自然语言处理任务的并行框架。EAGLE 与 Mamba 结合使用,可以显著提高生成效率。
FlashAttention
FlashAttention 是一个用于加速注意力机制计算的库。EAGLE 可以与 FlashAttention 结合使用,进一步优化推理速度。
通过结合这些生态项目,EAGLE 可以在各种应用场景中实现更高的效率和性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00