EAGLE 项目使用教程
1. 项目介绍
EAGLE(Extrapolation Algorithm for Greater Language-model Efficiency)是一个用于加速大型语言模型(LLMs)解码的新基准方法。EAGLE 通过外推 LLMs 的第二层上下文特征向量,显著提高了生成效率。EAGLE 不仅在速度上表现出色,还通过第三方评估认证为目前最快的推测方法之一,并且在生成文本的分布上保持了与传统解码方法的一致性。
EAGLE 项目由 SafeAILab 开发,提供了 EAGLE-1 和 EAGLE-2 的官方实现。EAGLE-2 进一步利用草稿模型的置信度分数来动态调整草稿树结构,从而进一步提升了性能。
2. 项目快速启动
安装与配置
首先,克隆 EAGLE 项目的 GitHub 仓库:
git clone https://github.com/SafeAILab/EAGLE.git
cd EAGLE
安装项目所需的依赖:
pip install -r requirements.txt
使用 EAGLE 进行推理
以下是一个使用 EAGLE 进行推理的示例代码:
from eagle.model.ea_model import EaModel
from fastchat.model import get_conversation_template
# 加载 EAGLE 模型
model = EaModel.from_pretrained(
base_model_path="path_to_base_model",
ea_model_path="path_to_EAGLE_model",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
total_token=-1
)
model.eval()
# 准备输入消息
your_message = "Hello"
conv = get_conversation_template("vicuna")
conv.append_message(conv.roles[0], your_message)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# 生成输入 ID
input_ids = model.tokenizer([prompt]).input_ids
input_ids = torch.as_tensor(input_ids).cuda()
# 使用 EAGLE 生成输出
output_ids = model.eagenerate(input_ids, temperature=0.5, max_new_tokens=512)
output = model.tokenizer.decode(output_ids[0])
print(output)
3. 应用案例和最佳实践
案例1:加速大型语言模型推理
EAGLE 可以显著加速大型语言模型的推理过程。例如,在 GPT-fast 上,EAGLE 实现了 2 倍的加速,比传统的解码方法快 3 倍。
案例2:结合其他并行技术
EAGLE 可以与其他并行技术(如 vLLM、DeepSpeed、Mamba、FlashAttention、量化和硬件优化)结合使用,进一步提高推理速度。
最佳实践
- 选择合适的模型:根据任务需求选择合适的 EAGLE 模型版本(EAGLE-1 或 EAGLE-2)。
- 调整参数:根据硬件设备和模型大小,调整
total_token参数以获得最佳性能。 - 结合其他优化技术:结合 vLLM、DeepSpeed 等技术,进一步优化推理速度。
4. 典型生态项目
vLLM
vLLM 是一个用于加速大型语言模型推理的并行框架。EAGLE 与 vLLM 结合使用,可以进一步提高推理速度。
DeepSpeed
DeepSpeed 是一个用于加速深度学习训练和推理的框架。EAGLE 可以与 DeepSpeed 结合使用,优化大型语言模型的推理性能。
Mamba
Mamba 是一个用于加速自然语言处理任务的并行框架。EAGLE 与 Mamba 结合使用,可以显著提高生成效率。
FlashAttention
FlashAttention 是一个用于加速注意力机制计算的库。EAGLE 可以与 FlashAttention 结合使用,进一步优化推理速度。
通过结合这些生态项目,EAGLE 可以在各种应用场景中实现更高的效率和性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00