EAGLE 项目使用教程
1. 项目介绍
EAGLE(Extrapolation Algorithm for Greater Language-model Efficiency)是一个用于加速大型语言模型(LLMs)解码的新基准方法。EAGLE 通过外推 LLMs 的第二层上下文特征向量,显著提高了生成效率。EAGLE 不仅在速度上表现出色,还通过第三方评估认证为目前最快的推测方法之一,并且在生成文本的分布上保持了与传统解码方法的一致性。
EAGLE 项目由 SafeAILab 开发,提供了 EAGLE-1 和 EAGLE-2 的官方实现。EAGLE-2 进一步利用草稿模型的置信度分数来动态调整草稿树结构,从而进一步提升了性能。
2. 项目快速启动
安装与配置
首先,克隆 EAGLE 项目的 GitHub 仓库:
git clone https://github.com/SafeAILab/EAGLE.git
cd EAGLE
安装项目所需的依赖:
pip install -r requirements.txt
使用 EAGLE 进行推理
以下是一个使用 EAGLE 进行推理的示例代码:
from eagle.model.ea_model import EaModel
from fastchat.model import get_conversation_template
# 加载 EAGLE 模型
model = EaModel.from_pretrained(
base_model_path="path_to_base_model",
ea_model_path="path_to_EAGLE_model",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
total_token=-1
)
model.eval()
# 准备输入消息
your_message = "Hello"
conv = get_conversation_template("vicuna")
conv.append_message(conv.roles[0], your_message)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# 生成输入 ID
input_ids = model.tokenizer([prompt]).input_ids
input_ids = torch.as_tensor(input_ids).cuda()
# 使用 EAGLE 生成输出
output_ids = model.eagenerate(input_ids, temperature=0.5, max_new_tokens=512)
output = model.tokenizer.decode(output_ids[0])
print(output)
3. 应用案例和最佳实践
案例1:加速大型语言模型推理
EAGLE 可以显著加速大型语言模型的推理过程。例如,在 GPT-fast 上,EAGLE 实现了 2 倍的加速,比传统的解码方法快 3 倍。
案例2:结合其他并行技术
EAGLE 可以与其他并行技术(如 vLLM、DeepSpeed、Mamba、FlashAttention、量化和硬件优化)结合使用,进一步提高推理速度。
最佳实践
- 选择合适的模型:根据任务需求选择合适的 EAGLE 模型版本(EAGLE-1 或 EAGLE-2)。
- 调整参数:根据硬件设备和模型大小,调整
total_token
参数以获得最佳性能。 - 结合其他优化技术:结合 vLLM、DeepSpeed 等技术,进一步优化推理速度。
4. 典型生态项目
vLLM
vLLM 是一个用于加速大型语言模型推理的并行框架。EAGLE 与 vLLM 结合使用,可以进一步提高推理速度。
DeepSpeed
DeepSpeed 是一个用于加速深度学习训练和推理的框架。EAGLE 可以与 DeepSpeed 结合使用,优化大型语言模型的推理性能。
Mamba
Mamba 是一个用于加速自然语言处理任务的并行框架。EAGLE 与 Mamba 结合使用,可以显著提高生成效率。
FlashAttention
FlashAttention 是一个用于加速注意力机制计算的库。EAGLE 可以与 FlashAttention 结合使用,进一步优化推理速度。
通过结合这些生态项目,EAGLE 可以在各种应用场景中实现更高的效率和性能。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









