ShuffleNet安装与使用指南
2024-08-18 17:29:44作者:江焘钦
欢迎阅读ShuffleNet的快速入门教程。本指南将引导您了解此开源项目的目录结构、启动文件以及配置文件的相关细节,帮助您快速上手这个高效的卷积神经网络架构。
1. 项目目录结构及介绍
以下是基于提供的GitHub链接【ShuffleNet(注意:实际链接应指向正确的仓库地址】的基本目录结构概述:
ShuffleNet/
│
├── README.md - 项目简介和快速指引
├── requirements.txt - 必需的Python库列表
├── shufflenet.py - ShuffleNet模型定义文件
├── train.py - 训练脚本
├── eval.py - 评估模型脚本
├── data - 数据处理相关模块或示例数据
│ ├── preprocess.py - 数据预处理脚本
│
├── models - 不同版本的模型子目录
│ └── shuffle_net_v2.py - ShuffleNet V2模型定义
│
├── configs - 配置文件存放处
│ ├── config.yaml - 主要配置文件,包括训练和测试参数
│
└── logs - 训练日志和模型权重保存目录
- README.md: 包含项目概述、快速安装步骤和基本使用说明。
- requirements.txt: 列出运行项目所需的第三方包。
- shufflenet.py: ShuffleNet的基础模型实现。
- train.py: 用于训练模型的主程序。
- eval.py: 评估模型性能的脚本。
- data目录: 存放数据预处理逻辑或数据样本。
- models目录: 包括不同版本ShuffleNet模型的实现。
- configs目录: 存储各种配置文件,指导训练和评估过程的设置。
- logs目录: 用于存储训练过程中产生的日志文件和训练好的模型权重。
2. 项目的启动文件介绍
训练脚本 - train.py
启动训练流程的核心文件。通过指定配置文件和数据路径等参数,执行模型的训练。一般调用形式如下:
python train.py --config_path path/to/config.yaml
其中,config_path指明了配置文件的路径,用于自定义训练细节。
评估脚本 - eval.py
用于评估模型性能,接受已训练模型的路径和配置文件作为输入:
python eval.py --model_path path/to/model.pth --config_path path/to/config.yaml
3. 项目的配置文件介绍
配置文件 - config.yaml
配置文件是控制训练和评估过程的关键。一个典型的配置文件可能包含以下部分:
model:
name: shuffle_net_v2 # 模型类型
params: # 模型特定参数
version: 'x1.0' # ShuffleNet版本
training:
batch_size: 32 # 批次大小
num_epochs: 100 # 总迭代轮数
learning_rate: 0.1 # 初始学习率
dataset:
root: '/path/to/data' # 数据集根目录
train_set: 'train' # 训练集名称
val_set: 'val' # 验证集名称
logging:
log_dir: './logs' # 日志及模型保存路径
配置文件允许用户根据自己的需求调整训练设置,如批大小、学习率、模型参数等,确保项目能够灵活适应不同的实验要求。
以上即是ShuffleNet项目的简单介绍和核心组件解析,根据这些指南,您可以轻松开始您的模型训练或评估之旅。请确保在具体操作时,查阅最新的官方文档或更新,以获取最准确的信息。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K