CASIA-SURF 2019 代码项目使用教程
2024-09-20 10:51:39作者:韦蓉瑛
1. 项目目录结构及介绍
CASIA-SURF 2019 代码项目的目录结构如下:
casia-surf-2019-codes/
├── checkpoint/
├── common/
├── data/
├── imgs/
├── symbols/
├── .gitignore
├── LICENSE
├── README.md
├── __init__.py
├── commit.py
├── commit_phase2.py
├── data_preprocess.py
├── readme.txt
├── requirements.txt
├── train_depth_densenet.py
├── train_depth_resnet.py
├── train_depth_shufflenet_v2.py
├── train_depth_vmspoofface.py
├── train_depth_vmspoofnet.py
├── train_depth_vmspoofnet_step2.py
├── train_depth_vmspoofnet_step3.py
├── train_depth_vmspoofnet_v2.py
├── train_depth_vmspoofnet_v2_step2.py
└── val_public_list_with_label.txt
目录结构介绍
- checkpoint/: 存放训练过程中生成的模型检查点文件。
- common/: 存放项目中使用的通用工具和函数。
- data/: 存放数据集预处理后的文件,如
.rec文件。 - imgs/: 存放项目中使用的图像文件。
- symbols/: 存放模型定义的符号文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文件。
- init.py: Python 包初始化文件。
- commit.py: 用于提交测试结果的脚本。
- commit_phase2.py: 用于第二阶段提交测试结果的脚本。
- data_preprocess.py: 数据集预处理脚本。
- readme.txt: 项目详细说明文件。
- requirements.txt: 项目依赖库配置文件。
- train_depth_densenet.py: 使用 DenseNet 模型进行训练的脚本。
- train_depth_resnet.py: 使用 ResNet 模型进行训练的脚本。
- train_depth_shufflenet_v2.py: 使用 ShuffleNet V2 模型进行训练的脚本。
- train_depth_vmspoofface.py: 使用 VMSpoofFace 模型进行训练的脚本。
- train_depth_vmspoofnet.py: 使用 VMSpoofNet 模型进行训练的脚本。
- train_depth_vmspoofnet_step2.py: VMSpoofNet 模型训练的第二步脚本。
- train_depth_vmspoofnet_step3.py: VMSpoofNet 模型训练的第三步脚本。
- train_depth_vmspoofnet_v2.py: 使用 VMSpoofNet V2 模型进行训练的脚本。
- train_depth_vmspoofnet_v2_step2.py: VMSpoofNet V2 模型训练的第二步脚本。
- val_public_list_with_label.txt: 验证集的标签文件。
2. 项目启动文件介绍
项目的启动文件主要是用于训练和测试的脚本文件。以下是主要的启动文件及其功能介绍:
- train_depth_shufflenet_v2.py: 这是项目的主要训练脚本,用于使用 ShuffleNet V2 模型进行训练。启动该脚本可以开始模型的训练过程。
python train_depth_shufflenet_v2.py
- commit.py: 这是用于提交测试结果的脚本。启动该脚本可以加载训练好的模型并生成测试结果。
python commit.py --load-epoch 73
- commit_phase2.py: 这是用于第二阶段提交测试结果的脚本。启动该脚本可以加载训练好的模型并生成第二阶段的测试结果。
python commit_phase2.py --load-epoch 73
3. 项目的配置文件介绍
项目的配置文件主要包括以下几个:
- requirements.txt: 该文件列出了项目运行所需的 Python 依赖库。使用以下命令可以安装所有依赖库:
pip install -r requirements.txt
-
readme.txt: 该文件包含了项目的详细说明,包括数据集的获取、环境配置、数据预处理、模型训练和测试的步骤。
-
data_preprocess.py: 该脚本用于数据集的预处理,生成训练和验证所需的
.lst和.rec文件。
python data_preprocess.py
通过以上配置文件和启动文件,用户可以顺利地进行数据集的预处理、模型的训练和测试。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.66 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
310
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
745
180
Ascend Extension for PyTorch
Python
302
343
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882