在ModelScope/Swift项目中调整多GPU训练配置的技术指南
2025-05-31 17:24:10作者:钟日瑜
背景介绍
ModelScope/Swift是一个开源的大模型训练框架,支持在多GPU环境下进行高效训练。在实际应用中,研究人员经常需要根据硬件资源调整训练配置,特别是GPU数量的变化会直接影响多个关键参数。
多GPU训练的核心参数
当用户需要从4张GPU调整为6张或10张GPU进行训练时,需要同步调整以下关键参数:
-
GPU设备指定参数:
CUDA_VISIBLE_DEVICES
:指定可见的GPU设备ID列表NPROC_PER_NODE
:设置每个节点的进程数,应与GPU数量一致
-
推理相关参数:
num_infer_workers
:推理工作进程数,建议与GPU数量保持一致tensor_parallel_size
:张量并行度,通常等于GPU数量
配置调整示例
6张GPU配置示例
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5 \
NPROC_PER_NODE=6 \
swift rlhf \
...
--num_infer_workers 6 \
--tensor_parallel_size 6 \
...
10张GPU配置示例
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7,8,9 \
NPROC_PER_NODE=10 \
swift rlhf \
...
--num_infer_workers 10 \
--tensor_parallel_size 10 \
...
注意事项
-
显存管理:增加GPU数量时,可能需要调整
vllm_gpu_memory_utilization
参数以优化显存使用 -
批量大小:GPU数量变化后,可以适当调整
per_device_train_batch_size
和gradient_accumulation_steps
以获得更好的训练效率 -
通信开销:GPU数量增加会带来更多的通信开销,可能需要调整
move_model_batches
参数 -
温度参数:在多GPU环境下,
temperature
、top_p
和top_k
等生成参数可能需要重新调优
性能优化建议
- 对于大规模模型训练,建议使用
deepspeed
的zero3_offload策略 - 启用
offload_optimizer
和offload_model
可以减轻GPU显存压力 - 适当设置
gc_collect_after_offload
有助于内存管理 - 根据硬件性能调整
sleep_level
参数
通过合理调整这些参数,用户可以在不同GPU配置下获得最优的训练性能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5