在ModelScope/Swift项目中调整多GPU训练配置的技术指南
2025-05-31 01:30:20作者:钟日瑜
背景介绍
ModelScope/Swift是一个开源的大模型训练框架,支持在多GPU环境下进行高效训练。在实际应用中,研究人员经常需要根据硬件资源调整训练配置,特别是GPU数量的变化会直接影响多个关键参数。
多GPU训练的核心参数
当用户需要从4张GPU调整为6张或10张GPU进行训练时,需要同步调整以下关键参数:
-
GPU设备指定参数:
CUDA_VISIBLE_DEVICES
:指定可见的GPU设备ID列表NPROC_PER_NODE
:设置每个节点的进程数,应与GPU数量一致
-
推理相关参数:
num_infer_workers
:推理工作进程数,建议与GPU数量保持一致tensor_parallel_size
:张量并行度,通常等于GPU数量
配置调整示例
6张GPU配置示例
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5 \
NPROC_PER_NODE=6 \
swift rlhf \
...
--num_infer_workers 6 \
--tensor_parallel_size 6 \
...
10张GPU配置示例
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7,8,9 \
NPROC_PER_NODE=10 \
swift rlhf \
...
--num_infer_workers 10 \
--tensor_parallel_size 10 \
...
注意事项
-
显存管理:增加GPU数量时,可能需要调整
vllm_gpu_memory_utilization
参数以优化显存使用 -
批量大小:GPU数量变化后,可以适当调整
per_device_train_batch_size
和gradient_accumulation_steps
以获得更好的训练效率 -
通信开销:GPU数量增加会带来更多的通信开销,可能需要调整
move_model_batches
参数 -
温度参数:在多GPU环境下,
temperature
、top_p
和top_k
等生成参数可能需要重新调优
性能优化建议
- 对于大规模模型训练,建议使用
deepspeed
的zero3_offload策略 - 启用
offload_optimizer
和offload_model
可以减轻GPU显存压力 - 适当设置
gc_collect_after_offload
有助于内存管理 - 根据硬件性能调整
sleep_level
参数
通过合理调整这些参数,用户可以在不同GPU配置下获得最优的训练性能。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8