在ModelScope Swift项目中实现VSCode调试训练脚本的方法
2025-05-31 14:45:32作者:范靓好Udolf
调试背景
在深度学习项目开发过程中,调试训练脚本是一个常见需求。ModelScope Swift项目作为一个开源的大模型训练框架,提供了丰富的命令行参数来配置训练过程。然而,直接在命令行中运行这些复杂参数的脚本不利于调试,特别是在需要断点调试、变量查看等场景下。
VSCode调试配置方案
针对ModelScope Swift项目的训练脚本调试,可以通过配置VSCode的launch.json文件来实现。以下是具体实现方法:
-
首先在VSCode中创建或修改项目根目录下的.vscode/launch.json文件
-
添加如下调试配置:
{
"version": "0.2.0",
"configurations": [
{
"name": "ds_train_debug",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": false,
"env": {
"CUDA_VISIBLE_DEVICES": "3,4",
"PYTHONPATH": "ms-swift",
"MASTER_PORT": "34229"
},
"args": [
"--model", "./Deepseek/Deepseek_Tiny_W",
"--model_type", "deepseek_vl2",
"--local_repo_path", "./Deepseek/ms-swift/DeepSeek_VL2",
"--dataset", "./train_reflect_768384_yolo.json",
"--train_type", "lora",
"--torch_dtype", "float16",
"--num_train_epochs", "1",
"--split_dataset_ratio", "0",
"--per_device_train_batch_size", "1",
"--per_device_eval_batch_size", "1",
"--learning_rate", "0.0001",
"--lora_rank", "8",
"--lora_alpha", "16",
"--target_modules", "all-linear",
"--freeze_vit", "true",
"--freeze_llm", "true",
"--gradient_accumulation_steps", "1",
"--eval_steps", "2",
"--save_steps", "20",
"--save_total_limit", "5",
"--logging_steps", "1",
"--max_length", "256",
"--output_dir", "./path_to_save",
"--warmup_ratio", "0.05",
"--dataloader_num_workers", "1",
"--dataset_num_proc", "1"
]
}
]
}
关键配置解析
- 调试器类型:使用debugpy作为Python调试器
- 环境变量配置:
- CUDA_VISIBLE_DEVICES:指定使用的GPU设备
- PYTHONPATH:设置Python模块搜索路径
- MASTER_PORT:分布式训练的主节点端口
- 参数传递:通过args数组传递所有训练参数,保持与命令行相同的参数格式
- 调试选项:justMyCode设为false可以调试第三方库代码
使用步骤
- 在VSCode中打开ModelScope Swift项目
- 定位到ms-swift/swift/cli/sft.py文件
- 设置断点在需要调试的位置
- 选择配置好的"ds_train_debug"调试配置
- 启动调试会话
调试技巧
- 变量监控:在调试过程中可以查看所有局部变量和全局变量
- 条件断点:可以设置只在特定条件下触发的断点
- 调用堆栈:查看函数调用关系,理解代码执行流程
- 交互式调试:可以在调试控制台执行Python代码,实时修改变量值
注意事项
- 确保所有文件路径相对于项目根目录正确
- 根据实际需求调整batch size等参数,避免显存不足
- 调试时建议先使用小规模数据集和少量epoch
- 分布式训练调试可能需要特殊配置
通过这种调试方法,开发者可以更高效地排查ModelScope Swift项目训练过程中的问题,理解模型训练流程,加速模型开发迭代。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217