在ModelScope Swift项目中实现VSCode调试训练脚本的方法
2025-05-31 03:07:23作者:范靓好Udolf
调试背景
在深度学习项目开发过程中,调试训练脚本是一个常见需求。ModelScope Swift项目作为一个开源的大模型训练框架,提供了丰富的命令行参数来配置训练过程。然而,直接在命令行中运行这些复杂参数的脚本不利于调试,特别是在需要断点调试、变量查看等场景下。
VSCode调试配置方案
针对ModelScope Swift项目的训练脚本调试,可以通过配置VSCode的launch.json文件来实现。以下是具体实现方法:
-
首先在VSCode中创建或修改项目根目录下的.vscode/launch.json文件
-
添加如下调试配置:
{
"version": "0.2.0",
"configurations": [
{
"name": "ds_train_debug",
"type": "debugpy",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": false,
"env": {
"CUDA_VISIBLE_DEVICES": "3,4",
"PYTHONPATH": "ms-swift",
"MASTER_PORT": "34229"
},
"args": [
"--model", "./Deepseek/Deepseek_Tiny_W",
"--model_type", "deepseek_vl2",
"--local_repo_path", "./Deepseek/ms-swift/DeepSeek_VL2",
"--dataset", "./train_reflect_768384_yolo.json",
"--train_type", "lora",
"--torch_dtype", "float16",
"--num_train_epochs", "1",
"--split_dataset_ratio", "0",
"--per_device_train_batch_size", "1",
"--per_device_eval_batch_size", "1",
"--learning_rate", "0.0001",
"--lora_rank", "8",
"--lora_alpha", "16",
"--target_modules", "all-linear",
"--freeze_vit", "true",
"--freeze_llm", "true",
"--gradient_accumulation_steps", "1",
"--eval_steps", "2",
"--save_steps", "20",
"--save_total_limit", "5",
"--logging_steps", "1",
"--max_length", "256",
"--output_dir", "./path_to_save",
"--warmup_ratio", "0.05",
"--dataloader_num_workers", "1",
"--dataset_num_proc", "1"
]
}
]
}
关键配置解析
- 调试器类型:使用debugpy作为Python调试器
- 环境变量配置:
- CUDA_VISIBLE_DEVICES:指定使用的GPU设备
- PYTHONPATH:设置Python模块搜索路径
- MASTER_PORT:分布式训练的主节点端口
- 参数传递:通过args数组传递所有训练参数,保持与命令行相同的参数格式
- 调试选项:justMyCode设为false可以调试第三方库代码
使用步骤
- 在VSCode中打开ModelScope Swift项目
- 定位到ms-swift/swift/cli/sft.py文件
- 设置断点在需要调试的位置
- 选择配置好的"ds_train_debug"调试配置
- 启动调试会话
调试技巧
- 变量监控:在调试过程中可以查看所有局部变量和全局变量
- 条件断点:可以设置只在特定条件下触发的断点
- 调用堆栈:查看函数调用关系,理解代码执行流程
- 交互式调试:可以在调试控制台执行Python代码,实时修改变量值
注意事项
- 确保所有文件路径相对于项目根目录正确
- 根据实际需求调整batch size等参数,避免显存不足
- 调试时建议先使用小规模数据集和少量epoch
- 分布式训练调试可能需要特殊配置
通过这种调试方法,开发者可以更高效地排查ModelScope Swift项目训练过程中的问题,理解模型训练流程,加速模型开发迭代。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1