Seurat中合并同源基因表达量的空间转录组分析方法
2025-07-02 19:13:59作者:柯茵沙
背景介绍
在空间转录组数据分析中,我们有时会遇到多个基因编码同一蛋白质的情况。本文以Seurat分析流程为例,介绍如何在空间转录组数据中合并同源基因的表达量,以便更准确地分析特定蛋白质的整体表达水平。
问题场景
研究人员在进行Visium空间转录组数据分析时发现:
- 基因Gene1在一种炎症条件下显著表达
- 同源基因Gene1B在另一种炎症条件下也有表达(虽然表达量较低)
- 这两个基因编码完全相同的蛋白质
这种情况下,单独分析单个基因的表达可能会低估该蛋白质的整体表达水平,因此需要将两个基因的表达量合并分析。
技术解决方案
核心思路
通过直接操作原始计数矩阵,在创建Seurat对象前合并同源基因的表达量。具体步骤包括:
- 使用
Read10X_h5读取原始计数矩阵 - 合并目标基因的表达量
- 创建新的合并基因行
- 移除原始基因行
- 创建Seurat对象
- 添加空间信息
详细实现代码
# 读取原始计数矩阵
counts <- Read10X_h5("path/to/filtered_feature_bc_matrix.h5")
# 合并同源基因表达量
counts_GF1 <- counts["Gene1", ] + counts["Gene1B", ]
# 创建新的合并基因行并移除原始基因
counts <- rbind(counts, GF1 = counts_GF1)
counts <- counts[!rownames(counts) %in% c("Gene1", "Gene1B"), ]
# 创建Seurat对象
seurat_obj <- CreateSeuratObject(counts, assay = "Spatial")
# 添加空间图像信息
image <- Read10X_Image(
"path/to/spatial/folder",
assay = "Spatial",
slice = "sample_name",
filter.matrix = TRUE
)
# 确保图像信息与细胞匹配
image <- image[Cells(seurat_obj)]
seurat_obj[["sample_name"]] <- image
技术要点解析
-
计数矩阵操作:直接在稀疏矩阵上进行操作,效率高且内存占用低
-
基因合并逻辑:简单地将两个基因的UMI计数相加,保留了原始数据的计数性质
-
空间信息保留:通过单独读取和添加空间图像信息,确保空间坐标等元数据不丢失
-
下游分析兼容性:合并后的基因可以像普通基因一样参与后续的差异表达分析、空间可视化等
应用建议
-
质量控制:合并前建议检查两个基因的表达相关性,确认它们确实代表同一生物学过程
-
命名规范:合并后的基因名称应明确反映其来源,便于后续分析理解
-
方法验证:对于关键结果,建议同时展示合并前后的分析结果作为对照
-
扩展应用:此方法同样适用于需要合并多个基因表达量的其他场景
总结
在Seurat空间转录组分析流程中,通过操作原始计数矩阵合并同源基因表达量是一种有效的方法,能够更全面地反映特定蛋白质的表达情况。这种方法简单直接,与标准分析流程兼容性好,为研究基因家族或同源基因提供了灵活的分析手段。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355