async-profiler内核符号不可用时用户空间跟踪丢失问题分析
2025-05-28 14:02:10作者:卓炯娓
问题背景
在使用async-profiler进行性能分析时,当跟踪路径进入内核空间后返回用户空间时,如果系统内核符号不可用,会导致整个调用链(包括用户空间部分)都无法显示。这种情况会给开发者造成性能热点在其他地方的错觉,严重影响性能分析的准确性。
问题表现
典型的调用链可能如下所示:
[13] do_syscall_64_[k]
[14] entry_SYSCALL_64_after_hwframe_[k]
[15] send
[16] io.netty.channel.unix.Socket.sendAddress
当内核符号不可用时(通常由于系统安全设置如kernel.perf_event_restrict和kernel.kptr_restrict的限制),async-profiler会显示警告信息,但同时会完全忽略这类调用链,而不是至少显示用户空间部分的调用信息。
问题根源
经过分析,问题的根本原因在于async-profiler在处理perf_event_attr.exclude_kernel标志时的逻辑缺陷。当系统配置仅允许用户空间测量时(这是Linux 4.6以来的默认设置),async-profiler会自动启用alluser选项,这会导致所有发生在内核空间的执行样本被静默丢弃。
解决方案
开发团队对CPU性能分析逻辑进行了重要改进:
-
自动检测机制:现在async-profiler会通过尝试创建虚拟perf_event来自动检查perf_events的可用性。
-
优雅降级策略:
- 如果内核空间分析不可用(包括被
perf_event_restrict设置或seccomp限制的情况),自动回退到基于timer_createAPI的ctimer模式 - 如果perf_events可用但内核符号被隐藏,继续使用perf_events并显示警告,只是不显示内核堆栈跟踪
- 如果内核空间分析不可用(包括被
-
配置优化:
- 移除了
allkernel选项 - 强制仅用户空间分析需显式指定
-e cpu-clock --all-user - JFR记录中新增
engine字段,明确当前使用的分析引擎
- 移除了
实际影响
这一改进显著提升了async-profiler在各种系统安全配置下的可用性。特别是对于运行在严格安全环境中的Java应用,现在能够:
- 在无法访问内核符号时仍能获取用户空间调用信息
- 自动选择最适合当前系统环境的分析引擎
- 通过明确的警告信息让用户了解分析限制
最佳实践建议
对于性能分析工程师,建议:
- 检查系统
perf_event_restrict和kptr_restrict设置 - 关注async-profiler输出的警告信息
- 在需要完整内核调用信息时适当调整系统安全设置
- 在受限环境中考虑使用最新版本的async-profiler以获得更好的兼容性
这一改进现已包含在async-profiler的最新版本中,显著提升了工具在各种环境下的可靠性和实用性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100