Async-profiler中如何跟踪JVM内部函数调用
2025-05-28 10:09:28作者:鲍丁臣Ursa
在性能分析领域,Async-profiler是一款功能强大的低开销采样分析工具。它不仅支持Java方法的分析,还能深入到JVM内部进行原生代码的性能剖析。本文将详细介绍如何使用Async-profiler来跟踪JVM内部特定的函数调用。
背景知识
JVM在运行时会执行大量内部函数,这些函数通常以C++实现并经过名称修饰(name mangling)。当我们需要分析特定JVM内部函数时,需要了解其完整的修饰名称才能进行准确跟踪。
问题场景
假设我们需要跟踪JVM中的check_class_file_load_hook函数,这个函数负责处理类文件加载时的hook检查。直接使用简单函数名尝试跟踪时,Async-profiler会报错提示"Unsupported event type"。
解决方案
获取完整符号名称
首先需要通过工具获取函数的完整修饰名称。使用nm命令查看JVM动态库中的符号:
nm /path/to/libjvm.so | grep check_class_file_load_hook
输出结果显示了经过名称修饰的完整符号:
_ZL26check_class_file_load_hookP15ClassFileStreamP6SymbolP15ClassLoaderData6HandlePP24JvmtiCachedClassFileDataP10JavaThread
使用Async-profiler跟踪
获得完整符号名称后,可以通过以下两种方式使用Async-profiler进行跟踪:
- 使用完整符号名称:
./asprof -e '_ZL26check_class_file_load_hookP15ClassFileStream...' -d 60 <pid>
- 使用通配符简化(推荐):
./asprof -e '_ZL26check_class_file_load_hook*' -d 60 <pid>
技术原理
Async-profiler在进行原生代码分析时,需要精确匹配函数符号。JVM内部函数通常具有复杂的名称修饰规则,包含:
- 参数类型信息
- 命名空间信息
- 函数名长度前缀
Async-profiler不会自动处理复杂的C++名称修饰,因此需要用户提供准确的符号名称或使用通配符模式匹配。
实际应用
这种技术可以应用于:
- JVM内部特定功能的性能分析
- 类加载过程的瓶颈定位
- JVM TI相关功能的调试
- 安全审计中的类加载监控
注意事项
- 不同JVM版本的符号名称可能有所变化
- 调试版本和发布版本的符号可见性可能不同
- 通配符使用要谨慎,避免匹配到不相关函数
- 需要确保有足够的权限访问目标进程
通过掌握这些技巧,开发者可以更深入地分析JVM内部行为,为性能优化和问题诊断提供有力工具支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210