Async-profiler中如何跟踪JVM内部函数调用
2025-05-28 04:50:06作者:鲍丁臣Ursa
在性能分析领域,Async-profiler是一款功能强大的低开销采样分析工具。它不仅支持Java方法的分析,还能深入到JVM内部进行原生代码的性能剖析。本文将详细介绍如何使用Async-profiler来跟踪JVM内部特定的函数调用。
背景知识
JVM在运行时会执行大量内部函数,这些函数通常以C++实现并经过名称修饰(name mangling)。当我们需要分析特定JVM内部函数时,需要了解其完整的修饰名称才能进行准确跟踪。
问题场景
假设我们需要跟踪JVM中的check_class_file_load_hook函数,这个函数负责处理类文件加载时的hook检查。直接使用简单函数名尝试跟踪时,Async-profiler会报错提示"Unsupported event type"。
解决方案
获取完整符号名称
首先需要通过工具获取函数的完整修饰名称。使用nm命令查看JVM动态库中的符号:
nm /path/to/libjvm.so | grep check_class_file_load_hook
输出结果显示了经过名称修饰的完整符号:
_ZL26check_class_file_load_hookP15ClassFileStreamP6SymbolP15ClassLoaderData6HandlePP24JvmtiCachedClassFileDataP10JavaThread
使用Async-profiler跟踪
获得完整符号名称后,可以通过以下两种方式使用Async-profiler进行跟踪:
- 使用完整符号名称:
./asprof -e '_ZL26check_class_file_load_hookP15ClassFileStream...' -d 60 <pid>
- 使用通配符简化(推荐):
./asprof -e '_ZL26check_class_file_load_hook*' -d 60 <pid>
技术原理
Async-profiler在进行原生代码分析时,需要精确匹配函数符号。JVM内部函数通常具有复杂的名称修饰规则,包含:
- 参数类型信息
- 命名空间信息
- 函数名长度前缀
Async-profiler不会自动处理复杂的C++名称修饰,因此需要用户提供准确的符号名称或使用通配符模式匹配。
实际应用
这种技术可以应用于:
- JVM内部特定功能的性能分析
- 类加载过程的瓶颈定位
- JVM TI相关功能的调试
- 安全审计中的类加载监控
注意事项
- 不同JVM版本的符号名称可能有所变化
- 调试版本和发布版本的符号可见性可能不同
- 通配符使用要谨慎,避免匹配到不相关函数
- 需要确保有足够的权限访问目标进程
通过掌握这些技巧,开发者可以更深入地分析JVM内部行为,为性能优化和问题诊断提供有力工具支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660