Fast-TransX:知识表示学习的极速实现
2024-09-19 10:09:02作者:裘晴惠Vivianne
项目介绍
Fast-TransX 是清华大学自然语言处理与社会人文计算实验室(THU-NLP)推出的一个子项目,隶属于 THU-OpenSK 系列。该项目专注于知识表示学习(Knowledge Representation Learning, KRL),提供了对 TransE、TransH、TransR、TransD 和 TranSparse 等模型的极速实现。Fast-TransX 基于之前的 KB2E 项目进行了优化,通过多线程训练大幅提升了训练速度,同时保持了较高的模型性能。
项目技术分析
Fast-TransX 的核心技术在于其对知识表示学习模型的优化实现。通过多线程并行训练,Fast-TransX 显著减少了训练时间,同时保持了与原始模型相当的准确性。具体来说,Fast-TransX 在 FB15K 和 WN18 数据集上的表现显示,其训练时间相比原始模型减少了数十倍,而模型性能几乎没有下降。
此外,Fast-TransX 支持多种知识表示学习模型,包括 TransE、TransH、TransR、TransD 和 TranSparse,用户可以根据具体需求选择合适的模型进行训练。项目还提供了详细的编译和训练指南,方便用户快速上手。
项目及技术应用场景
Fast-TransX 适用于多种知识图谱相关的应用场景,包括但不限于:
- 知识图谱补全:通过学习实体和关系的嵌入表示,自动补全知识图谱中的缺失信息。
- 推荐系统:利用知识图谱中的关系信息,提升推荐系统的准确性和多样性。
- 问答系统:通过知识表示学习,提升问答系统对复杂问题的理解和回答能力。
- 语义搜索:利用知识图谱中的语义信息,提升搜索结果的相关性和准确性。
项目特点
- 极速训练:通过多线程并行训练,Fast-TransX 大幅减少了训练时间,提高了开发效率。
- 多种模型支持:支持 TransE、TransH、TransR、TransD 和 TranSparse 等多种知识表示学习模型,满足不同应用需求。
- 易于使用:项目提供了详细的编译和训练指南,用户可以快速上手并进行自定义配置。
- 高性能:在保持训练速度的同时,Fast-TransX 的模型性能与原始模型相当,甚至在某些情况下表现更优。
结语
Fast-TransX 是一个高效、易用的知识表示学习工具,适用于多种知识图谱相关的应用场景。无论你是研究者还是开发者,Fast-TransX 都能帮助你快速构建和优化知识图谱模型,提升应用性能。快来尝试吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1