Darts项目中使用Ray Tune进行超参数优化的最新实践
2025-05-27 22:48:35作者:傅爽业Veleda
在时间序列预测领域,Darts是一个功能强大的Python库,它提供了多种预测模型和工具。其中,超参数优化是提升模型性能的重要环节。本文将详细介绍如何在Darts项目中利用最新版本的Ray Tune进行超参数优化。
Ray Tune API的演进
Ray Tune作为Ray生态系统中的超参数优化库,近年来经历了API的重大变化。从早期的tune.run()方法转变为现在推荐的tune.Tuner.fit()模式,这一变化带来了更清晰、更模块化的代码结构。
Darts与Ray Tune集成的新方法
在Darts中实现超参数优化时,我们需要构建一个可调用的目标函数。这个函数应该接收一个包含超参数的字典,并返回一个评估指标(如损失值)。以下是一个典型的目标函数结构:
def objective_fn(trial_params, target_series, past_covariates):
# 从trial_params中提取超参数
param1 = trial_params["param1"]
param2 = trial_params["param2"]
# 使用超参数创建和训练模型
model = SomeDartsModel(param1=param1, param2=param2)
model.fit(target_series, past_covariates=past_covariates)
# 评估模型性能
pred = model.predict(n=forecast_horizon)
loss = mse(target_series[-forecast_horizon:], pred)
return loss
配置搜索空间
Ray Tune提供了多种方式来定义超参数的搜索空间:
from ray import tune
search_space = {
"learning_rate": tune.loguniform(1e-4, 1e-1),
"batch_size": tune.choice([16, 32, 64]),
"num_layers": tune.randint(1, 4),
"hidden_size": tune.grid_search([32, 64, 128])
}
使用Tuner进行优化
新版Ray Tune的核心是Tuner类,它提供了更灵活的配置选项:
from ray.tune import Tuner
from ray.tune.schedulers import ASHAScheduler
from ray.tune.search import BayesOptSearch
# 配置搜索算法和调度器
algo = BayesOptSearch()
scheduler = ASHAScheduler()
tuner = Tuner(
tune.with_parameters(objective_fn,
target_series=target_series,
past_covariates=past_covariates),
param_space=search_space,
tune_config=tune.TuneConfig(
metric="loss",
mode="min",
search_alg=algo,
scheduler=scheduler,
num_samples=50
),
run_config=RunConfig(
name="darts_hpo",
stop={"training_iteration": 100}
)
)
# 执行优化
results = tuner.fit()
结果分析与最佳参数获取
优化完成后,我们可以方便地获取和分析结果:
best_result = results.get_best_result(metric="loss", mode="min")
best_config = best_result.config
best_metrics = best_result.metrics
print(f"最佳配置: {best_config}")
print(f"最佳损失值: {best_metrics['loss']}")
实际应用建议
- 资源管理:合理设置并行试验数量,考虑可用CPU/GPU资源
- 早期停止:使用ASHA或HyperBand等调度器提前终止表现不佳的试验
- 日志记录:利用Ray Tune的日志功能跟踪试验进度
- 检查点:为长时间运行的试验设置检查点以防中断
- 混合搜索策略:结合随机搜索和贝叶斯优化等方法
通过采用新的Tuner API,Darts用户可以更高效地进行超参数优化,构建性能更优的时间序列预测模型。这种方法不仅代码更清晰,而且能够充分利用Ray Tune的最新功能,如高级调度算法和并行优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136