trlX 开源项目教程
2024-09-16 12:43:38作者:咎竹峻Karen
1. 项目介绍
trlX 是一个用于通过强化学习(Reinforcement Learning, RL)训练大型语言模型(Large Language Models, LLMs)的分布式训练框架。该项目由 CarperAI 开发,旨在提供一个高效、灵活的工具,支持使用 PPO(Proximal Policy Optimization)和 ILQL(Implicit Language Q-Learning)等强化学习算法对语言模型进行微调。
trlX 支持两种分布式训练后端:Huggingface 🤗 Accelerate 和 NVIDIA NeMo。这使得用户可以在不同的硬件配置上进行训练,从小型模型到超过 20B 参数的大型模型。
2. 项目快速启动
安装
首先,克隆项目仓库并安装必要的依赖:
git clone https://github.com/CarperAI/trlx.git
cd trlx
pip install torch --extra-index-url https://download.pytorch.org/whl/cu118
pip install -e .
快速训练示例
以下是一个使用 PPO 算法训练 GPT-2 模型的简单示例:
from trlx import train
# 定义奖励函数
def reward_fn(samples, **kwargs):
return [sample.count('cats') for sample in samples]
# 开始训练
trainer = train('gpt2', reward_fn=reward_fn)
3. 应用案例和最佳实践
案例1:情感分析
使用 ILQL 算法对 GPT-2 模型进行情感分析训练:
from trlx import train
# 定义奖励函数
def reward_fn(samples, **kwargs):
return [1 if 'positive' in sample else 0 for sample in samples]
# 开始训练
trainer = train('gpt2', reward_fn=reward_fn, algorithm='ILQL')
案例2:生成帮助性文本
使用 PPO 算法生成帮助性文本:
from trlx import train
# 定义奖励函数
def reward_fn(samples, **kwargs):
return [1 if 'helpful' in sample else 0 for sample in samples]
# 开始训练
trainer = train('gpt2', reward_fn=reward_fn)
4. 典型生态项目
Huggingface 🤗 Transformers
trlX 与 Huggingface 🤗 Transformers 库紧密集成,支持对 Huggingface 提供的各种预训练模型进行微调。用户可以轻松加载和使用这些模型进行训练。
NVIDIA NeMo
对于需要处理超过 20B 参数的大型模型,trlX 提供了与 NVIDIA NeMo 的集成,利用其高效的并行技术进行分布式训练。
Ray Tune
trlX 支持使用 Ray Tune 进行超参数优化,帮助用户找到最佳的训练配置。
ray start --head --port=6379
python -m trlx.sweep --config configs/sweeps/ppo_sweep.yml --accelerate_config configs/accelerate/ddp.yaml --num_gpus 4 examples/ppo_sentiments.py
通过这些生态项目的支持,trlX 为用户提供了全面的工具链,帮助他们在不同的场景下高效地训练和优化语言模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134