【亲测免费】 Neural-Network-Architecture-Diagrams 项目教程
1. 项目介绍
Neural-Network-Architecture-Diagrams 是一个开源项目,旨在帮助用户使用 diagrams.net(也称为 draw.io)生成和可视化神经网络模型架构的图表。该项目提供了多种预定义的神经网络架构图表模板,用户可以根据需要进行修改和扩展。通过这些图表,用户可以更清晰地展示和解释神经网络的结构,适用于学术论文、技术报告和教学材料等场景。
2. 项目快速启动
2.1 克隆项目
首先,克隆项目到本地:
git clone https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams.git
2.2 安装依赖
该项目不需要额外的依赖安装,因为它是基于 diagrams.net 的图表生成工具。
2.3 打开图表文件
进入项目目录,使用 diagrams.net 打开 .drawio 文件:
cd Neural-Network-Architecture-Diagrams
diagrams.net 1D\ Complex-Valued\ Neural\ Network\ \(CVNN\).drawio
2.4 编辑和保存图表
在 diagrams.net 中编辑图表,完成后保存文件。你可以导出为多种格式,如 .png、.jpg 或 .svg。
3. 应用案例和最佳实践
3.1 学术论文中的应用
在撰写学术论文时,清晰地展示神经网络的架构是非常重要的。使用该项目提供的模板,可以快速生成高质量的图表,并将其插入到论文中。例如,使用 Deep Convolutional Network (DCN).drawio 模板来展示卷积神经网络的结构。
3.2 技术报告中的应用
在编写技术报告时,图表可以帮助读者更好地理解复杂的神经网络架构。例如,使用 Recurrent Neural Network (RNN).drawio 模板来展示循环神经网络的结构。
3.3 教学材料中的应用
在教学过程中,使用图表可以帮助学生更直观地理解神经网络的工作原理。例如,使用 Auto Encoder (AE).drawio 模板来展示自编码器的结构。
4. 典型生态项目
4.1 diagrams.net
diagrams.net 是一个开源的图表绘制工具,支持多种图表类型,包括流程图、UML 图、网络图等。它是该项目的主要依赖工具,提供了强大的图表编辑功能。
4.2 LaTeX
在学术论文中,通常使用 LaTeX 进行排版。diagrams.net 生成的图表可以直接导出为 .pdf 格式,并插入到 LaTeX 文档中。
4.3 GitHub
GitHub 是一个代码托管平台,也是该项目的主要托管平台。通过 GitHub,用户可以方便地查看、克隆和贡献代码。
通过以上步骤,你可以快速上手并使用 Neural-Network-Architecture-Diagrams 项目来生成和可视化神经网络模型架构的图表。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00