Apache Druid扩展开发:解决SQL聚合函数测试中的ComponentSupplier配置问题
2025-05-17 01:50:39作者:秋泉律Samson
背景介绍
在Apache Druid扩展开发过程中,为系统添加自定义SQL聚合函数是一个常见需求。开发者通常需要编写单元测试来验证这些自定义函数的正确性。然而,近期在Druid 32版本之后,原有的测试框架API发生了重大变化,导致许多基于旧版本编写的测试用例无法正常运行。
问题现象
开发者在实现自定义聚合函数测试时遇到了一个典型错误:"Cannot read field 'componentSupplier' because 'config' is null"。这个错误发生在尝试使用@ComponentSupplier注解配置测试环境时,表明测试框架未能正确初始化Guice依赖注入配置。
技术分析
组件供应机制
Apache Druid的测试框架使用Guice进行依赖注入管理。@ComponentSupplier注解原本用于指定测试类使用的组件供应器,但在框架升级后,其工作方式发生了变化。核心问题在于:
- 测试框架期望通过JUnit 5扩展机制自动初始化配置
- 当测试类使用JUnit 4的
@Test注解时,初始化流程会被跳过 - 导致
SqlTestFrameworkConfig无法正确建立组件供应器映射
框架演进
从Druid 32版本开始:
- 移除了原有的
configureGuice方法 - 改为基于注解的自动配置方式
- 强化了与JUnit 5的集成
解决方案
临时解决方案
通过手动初始化配置可以临时解决问题:
private static void initializeGuiceConfiguration() {
List<Annotation> annotations = List.of(TestClass.class.getAnnotations());
queryFrameworkRule.setConfig(new SqlTestFrameworkConfig(annotations));
}
这种方法虽然有效,但违背了框架设计的初衷,不是最佳实践。
推荐方案
正确的做法是:
- 确保使用JUnit 5的测试注解(
org.junit.jupiter.api.Test) - 完整实现组件供应器类
- 正确配置测试类注解
示例组件供应器实现:
public class CustomComponentSupplier extends SqlTestFramework.StandardComponentSupplier {
public CustomComponentSupplier(TempDirProducer tempDirProducer) {
super(tempDirProducer);
}
@Override
public DruidModule getCoreModule() {
return DruidModuleCollection.of(
super.getCoreModule(),
new CustomExtensionModule()
);
}
}
最佳实践
- 版本适配:针对Druid 32+版本,应使用新的测试框架API
- 注解规范:统一使用JUnit 5的测试注解
- 模块管理:在组件供应器中明确声明所有需要的模块
- 环境隔离:确保每个测试类有独立的配置环境
总结
Apache Druid测试框架的演进带来了更现代的编程模型,但也需要开发者适应新的API使用方式。理解Guice在测试环境中的工作机理,以及JUnit 5扩展点的加载时机,对于编写可靠的扩展测试至关重要。当遇到配置问题时,检查注解版本和初始化流程往往是解决问题的关键。
对于正在迁移旧测试代码的开发者,建议全面升级到JUnit 5,并参考最新的官方示例代码,这能避免许多潜在的兼容性问题,也能更好地利用框架提供的新特性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.65 K
Ascend Extension for PyTorch
Python
131
157
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
198
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.46 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206