OpenCompass中Qwen-14B-Base模型MMLU评估问题解析
2025-06-08 23:09:52作者:凤尚柏Louis
问题背景
在使用OpenCompass评估框架对Qwen-14B-Base模型进行MMLU数据集测试时,发现模型输出了包含完整选项解释的长文本结果,而非预期的简洁选项(A/B/C/D)。这种现象在基础模型评估中较为常见,需要特别理解其技术原理和处理方法。
技术原理分析
-
基础模型特性
Qwen-14B-Base作为基础模型,其核心设计目标是完成文本补全任务。当给定一个问题时,模型会基于概率预测生成最可能的后续文本,这种机制自然会产生包含解释的完整回答。 -
与指令模型的区别
指令微调模型(如Qwen-14B-Instruct)经过特定训练,能够理解"只需返回选项字母"这类指令。而基础模型缺乏这种指令跟随能力,会按照预训练模式生成完整内容。 -
MMLU评估的适配性
虽然MMLU通常用于评估模型知识,但对基础模型需要特殊处理。原始论文中使用的评估方法可能包含后处理步骤来提取选项字母。
解决方案
-
参数调整法
通过设置max_new_tokens=1限制生成长度,强制模型仅输出第一个token(通常是选项字母)。但需注意:- 可能影响模型对复杂问题的推理
- 需要验证tokenizer是否将选项字母作为独立token
-
概率模式(PPL)
更推荐使用perplexity计算方式:# 示例配置 eval_mode = 'ppl' # 替代默认的'gen'模式- 分别计算每个选项的续写概率
- 选择概率最高的选项作为答案
- 完全避免生成问题,结果更可靠
-
后处理方案
若必须使用生成模式:- 添加正则表达式提取首个出现的选项字母
- 设置
stop_words参数终止生成
实践建议
- 对于严谨的评估,优先采用PPL模式
- 基础模型评估时需明确其与指令模型的预期差异
- 可参考Qwen2的官方评估方案,其可能包含特定的prompt模板或后处理逻辑
扩展思考
这种现象揭示了基础LLM评估的关键认知:模型输出行为高度依赖其训练目标。开发者在设计评估方案时,需要根据模型类型选择适配的评估策略,这对获得有意义的基准测试结果至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868