Async-profiler在Azul Zing虚拟机上的段错误问题分析与解决
问题背景
在Java应用性能分析领域,async-profiler是一款广受欢迎的低开销性能分析工具。近期有用户报告在使用async-profiler 3.0版本对运行在Azul Zing JVM(1.8.0_322-zing_22.02.0.0版本)上的应用进行分析时,频繁出现段错误(Segmentation fault)导致JVM崩溃的情况。该问题在使用dwarf调用栈分析模式时尤为明显。
技术分析
通过分析崩溃日志hs_err_pid.log,开发团队发现崩溃发生在非JVM管理的原生线程中,但该线程却异常地指向了VMThread结构。这种情况表明在Zing虚拟机的特定实现中,Java线程与平台线程之间的映射关系存在不一致性。
Azul Zing作为一款商业JVM,其内部线程管理机制与OpenJDK存在一定差异。特别是在处理原生线程与Java线程的映射关系时,Zing的实现可能导致async-profiler在采集调用栈信息时获取到不一致的线程状态。
解决方案
开发团队针对此问题进行了深入研究并提交了修复方案。该方案的核心改进包括:
- 取消对Java线程与平台线程映射关系的依赖
- 优化线程状态检查逻辑,避免访问可能不一致的线程结构
由于缺乏稳定的复现环境,开发团队采用了保守的修复策略,这带来一个副作用:在修复后的版本中,线程名称显示将被截断为15个字符(Linux平台的线程名长度限制)。这是为了确保稳定性而做出的权衡。
验证与反馈
经过用户验证,该修复方案有效解决了段错误导致的JVM崩溃问题。虽然线程名称显示存在截断,但核心的profiling功能保持完整且稳定。开发团队表示,如果有用户能提供稳定的复现案例,他们愿意进一步优化解决方案。
最佳实践建议
对于使用Azul Zing虚拟机的用户,建议:
- 使用修复后的async-profiler版本进行性能分析
- 在分析报告中注意线程名称可能被截断的情况
- 如果遇到其他稳定性问题,尽可能提供可复现的测试用例
这个案例展示了在特定JVM实现上进行性能分析时可能遇到的兼容性挑战,也体现了async-profiler团队对稳定性问题快速响应的能力。通过社区反馈与开发者修复的良性互动,工具得以不断完善。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00