Marten项目中的Include与Count联合查询问题解析
2025-06-26 14:26:33作者:房伟宁
问题背景
在Marten这个.NET平台上的文档数据库库中,开发者在使用LINQ查询时可能会遇到一个特殊场景:当尝试在同一个查询中同时使用Include和Count方法时,会出现预期之外的结果。这个问题在Marten V7版本中尤为明显。
问题重现
让我们通过一个具体的代码示例来说明这个问题:
// 创建测试数据
for (var i = 1; i <= 10; i++)
{
theSession.Store(new User9999 { Id = i.ToString(), Age = i });
theSession.Store(new UserInformation9999 { Id = i.ToString(), Salary = i });
}
// 第一种查询方式 - 正常工作
var queryA = theSession.Query<User9999>().Where(u => u.Age > 5);
var countA = await queryA.CountAsync(); // 返回5
var usersA = await queryA.ToListAsync(); // 返回5条记录
// 第二种查询方式 - 出现问题
var userInfo = new Dictionary<string, UserInformation9999>();
var queryB = theSession.Query<User9999>()
.Where(u => u.Age > 5)
.Include(x => x.Id, userInfo);
var countB = await queryB.CountAsync(); // 错误地返回10
var usersB = await queryB.ToListAsync(); // 正确返回5条记录
问题本质
这个问题的核心在于IQueryable的重用机制和Marten内部查询构建的特殊性。当我们在同一个IQueryable实例上连续调用CountAsync()和ToListAsync()时,Marten会为每个操作生成并执行不同的SQL语句。
Include操作会改变查询的行为,因为它需要同时加载主文档和相关文档。在Marten V7中,这种改变影响了Count操作的准确性,导致它忽略了之前的Where条件。
解决方案
官方推荐的解决方案是避免重用同一个IQueryable实例进行多次查询操作。正确的做法应该是:
// 正确做法:分开创建查询
var count = await theSession.Query<User9999>()
.Where(u => u.Age > 5)
.CountAsync();
var userInfo = new Dictionary<string, UserInformation9999>();
var users = await theSession.Query<User9999>()
.Where(u => u.Age > 5)
.Include(x => x.Id, userInfo)
.ToListAsync();
技术深入
从技术实现角度看,这个问题源于Marten在构建查询时的内部机制:
- Include操作会创建一个特殊的查询计划,需要同时处理主文档和相关文档
- Count操作在这种复杂查询下可能会忽略部分过滤条件
- IQueryable的延迟执行特性使得问题在运行时才显现
最佳实践
基于这个案例,我们可以总结出以下Marten使用的最佳实践:
- 避免重用IQueryable实例进行多次查询操作
- 将Count查询和其他操作分开执行
- 对于复杂查询,考虑使用明确的查询构建方式而非链式调用
- 在升级Marten版本时,特别注意查询行为的改变
结论
虽然这个问题看起来像是Marten的一个bug,但实际上它反映了IQueryable和ORM框架使用中的一个常见陷阱。理解查询构建的内部机制和遵循最佳实践可以帮助开发者避免这类问题。在Marten中,明确分离不同的查询操作是保证查询结果准确性的关键。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137