Marten项目中的Include与分页查询问题解析
问题背景
在使用Marten这个.NET ORM框架进行数据库操作时,开发者在从v6版本迁移到v7.26.1版本后遇到了一个典型问题:当同时使用Include方法和ToPagedListAsync方法进行分页查询时,系统会抛出"column d.id does not exist"的错误。这个问题特别值得关注,因为它涉及到Marten框架中两个常用功能的组合使用。
问题现象
开发者定义了两个简单的实体类User和UserInformation,并通过Include方法试图在一次查询中同时获取主实体和关联实体。当使用ToListAsync方法时,查询能够正常执行;但一旦改用ToPagedListAsync方法进行分页查询,就会抛出PostgreSQL错误,提示找不到id列。
技术分析
深入分析这个问题,我们可以发现几个关键点:
-
SQL生成差异:通过调试发现,使用ToListAsync和ToPagedListAsync时,Marten生成的SQL语句有显著不同。ToListAsync生成的临时表包含id列,而ToPagedListAsync生成的临时表缺少这个关键列。
-
会话类型影响:问题的根本原因与会话类型有关。IQuerySession在设计上是一个轻量级的只读会话,而IDocumentSession提供了更完整的功能支持。当使用分页查询这种复杂操作时,需要更完整的会话支持。
-
版本兼容性:这个问题在v6.4.1版本中不存在,但从v7.0.0开始出现,说明这与Marten v7的内部重构有关。
解决方案
经过验证,有以下几种解决方案:
- 使用完整会话:将IQuerySession替换为IDocumentSession(通过LightweightSession方法创建),这是最推荐的解决方案。
// 推荐方案
await using var session = store.LightweightSession();
var userInfo = new Dictionary<string, UserInformation>();
var users = await session
.Query<User>()
.Include(userInfo).On(x => x.Id!)
.ToPagedListAsync(1, 1);
-
避免特定组合:如果必须使用IQuerySession,可以暂时避免在分页查询中使用Include,改为先获取分页结果,再单独加载关联实体。
-
检查代码生成:确保没有遗留的v6版本的预生成代码干扰,特别是在升级项目时。
最佳实践建议
-
会话类型选择:根据操作需求选择合适的会话类型。对于复杂查询和需要写入操作的场景,优先使用IDocumentSession。
-
版本升级注意:从Marten v6升级到v7时,需要特别注意API变化,特别是Include语法在v7.10.x版本后的变化。
-
测试覆盖:对于关键查询路径,特别是包含Include和分页等复杂操作的场景,应该增加测试覆盖率。
-
监控SQL:在开发阶段,可以通过Marten的日志功能监控实际生成的SQL语句,有助于快速定位类似问题。
总结
这个问题展示了ORM框架中高级查询功能的复杂性。Marten作为一个功能丰富的.NET ORM,在提供强大功能的同时,也需要开发者理解其内部工作机制。通过选择合适的会话类型和遵循最佳实践,可以避免这类问题,充分发挥Marten在文档数据库操作中的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00