Marten项目中的Include与分页查询问题解析
问题背景
在使用Marten这个.NET ORM框架进行数据库操作时,开发者在从v6版本迁移到v7.26.1版本后遇到了一个典型问题:当同时使用Include方法和ToPagedListAsync方法进行分页查询时,系统会抛出"column d.id does not exist"的错误。这个问题特别值得关注,因为它涉及到Marten框架中两个常用功能的组合使用。
问题现象
开发者定义了两个简单的实体类User和UserInformation,并通过Include方法试图在一次查询中同时获取主实体和关联实体。当使用ToListAsync方法时,查询能够正常执行;但一旦改用ToPagedListAsync方法进行分页查询,就会抛出PostgreSQL错误,提示找不到id列。
技术分析
深入分析这个问题,我们可以发现几个关键点:
-
SQL生成差异:通过调试发现,使用ToListAsync和ToPagedListAsync时,Marten生成的SQL语句有显著不同。ToListAsync生成的临时表包含id列,而ToPagedListAsync生成的临时表缺少这个关键列。
-
会话类型影响:问题的根本原因与会话类型有关。IQuerySession在设计上是一个轻量级的只读会话,而IDocumentSession提供了更完整的功能支持。当使用分页查询这种复杂操作时,需要更完整的会话支持。
-
版本兼容性:这个问题在v6.4.1版本中不存在,但从v7.0.0开始出现,说明这与Marten v7的内部重构有关。
解决方案
经过验证,有以下几种解决方案:
- 使用完整会话:将IQuerySession替换为IDocumentSession(通过LightweightSession方法创建),这是最推荐的解决方案。
// 推荐方案
await using var session = store.LightweightSession();
var userInfo = new Dictionary<string, UserInformation>();
var users = await session
.Query<User>()
.Include(userInfo).On(x => x.Id!)
.ToPagedListAsync(1, 1);
-
避免特定组合:如果必须使用IQuerySession,可以暂时避免在分页查询中使用Include,改为先获取分页结果,再单独加载关联实体。
-
检查代码生成:确保没有遗留的v6版本的预生成代码干扰,特别是在升级项目时。
最佳实践建议
-
会话类型选择:根据操作需求选择合适的会话类型。对于复杂查询和需要写入操作的场景,优先使用IDocumentSession。
-
版本升级注意:从Marten v6升级到v7时,需要特别注意API变化,特别是Include语法在v7.10.x版本后的变化。
-
测试覆盖:对于关键查询路径,特别是包含Include和分页等复杂操作的场景,应该增加测试覆盖率。
-
监控SQL:在开发阶段,可以通过Marten的日志功能监控实际生成的SQL语句,有助于快速定位类似问题。
总结
这个问题展示了ORM框架中高级查询功能的复杂性。Marten作为一个功能丰富的.NET ORM,在提供强大功能的同时,也需要开发者理解其内部工作机制。通过选择合适的会话类型和遵循最佳实践,可以避免这类问题,充分发挥Marten在文档数据库操作中的优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00