在AMD GPU版Stable Diffusion WebUI中优化VAE显存占用的技术方案
2025-07-04 06:58:30作者:胡易黎Nicole
问题背景
AMD GPU版Stable Diffusion WebUI(基于DirectML)在低显存显卡(如4GB或更低)上运行时,经常在VAE解码阶段出现显存不足的问题。虽然生成过程可能顺利完成,但最后的VAE解码步骤却会导致"Out of Memory"错误,使得整个生成过程功亏一篑。
现有解决方案分析
1. 低显存模式(--lowvram)
这是最基础的解决方案,通过添加--lowvram参数可以显著降低显存使用量。但根据用户反馈,在某些情况下,即使启用了低显存模式,VAE解码阶段仍然会耗尽显存。
2. 平铺VAE(Tiled VAE)
平铺VAE是一种将大图像分割成小块分别处理的技术,可以有效降低显存需求。使用时需要注意:
- 对于SD1.5模型,建议设置编码器分辨率为1024,解码器为128
- 对于SDXL模型,建议设置"Upscale by"为1.5,分辨率为768x1024,编码器为1280,解码器为128
但平铺VAE在AMD显卡上可能会出现左下角灰色区块的渲染问题,这是DirectML驱动的一个已知bug。
进阶解决方案:强制VAE在CPU运行
对于极端低显存环境(如2-4GB显卡),可以考虑强制VAE在CPU上运行。这种方法虽然会显著降低处理速度,但能彻底解决显存不足问题。
实施步骤
- 确保使用最新版WebUI
- 在启动参数中添加
--lowvram --no-half-vae - 修改源代码:
- 在
modules/processing.py中,在约1082行后添加:samples_ddim = samples_ddim.to(devices.dtype_vae).to("cpu") x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) - 在
modules/lowvram.py中,注释掉第73行
- 在
注意事项
- 此方法会显著降低处理速度,仅建议在无法使用其他方法时采用
- 仅测试过SD1.5模型,SDXL模型可能需要更多测试
- 修改源代码前请做好备份
其他优化建议
- 使用轻量级VAE:如TAESD,可在设置中启用
- 合理设置分辨率:4GB显存建议最大768x768分辨率
- 避免使用Hires Fix:低显存环境下建议使用SD-Upscale脚本替代
- 优化参数组合:
--use-directml --lowvram --opt-sub-quad-attention --opt-split-attention --no-half-vae --upcast-sampling
总结
针对AMD GPU版Stable Diffusion WebUI在低显存环境下的VAE显存问题,开发者可以根据自身硬件条件和需求选择适合的解决方案。从简单的启动参数优化到复杂的源代码修改,各种方法各有优劣。理解这些技术方案的原理和实施细节,能够帮助用户在有限的硬件资源下获得最佳的AI绘画体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
289
2.6 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
226
305
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
181
暂无简介
Dart
576
127
Ascend Extension for PyTorch
Python
115
147
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
76
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
154
58