Classiq量子计算框架实现分子几何优化的全CI能量梯度算法
2025-07-07 08:18:52作者:齐冠琰
量子计算在量子化学模拟领域展现出巨大潜力,特别是对于传统计算机难以处理的大分子系统。本文将介绍基于Classiq量子计算框架实现的一种新型量子算法,该算法能够在全组态相互作用(Full Configuration Interaction, FCI)理论水平上计算分子能量梯度,从而实现分子几何结构的优化。
算法理论基础
该算法核心思想来源于Sugisaki等人提出的量子数值能量梯度计算方法。传统化学计算中,能量梯度计算通常采用有限差分法,而该研究创新性地将这一概念与量子相位估计算法相结合。
算法主要包含两个关键技术:
- 两点有限差分法:通过微小扰动分子几何结构(Δx)来近似计算能量梯度
- 贝叶斯相位差估计(BPDE):一种改进的量子相位估计算法,专门用于精确估计两个相近分子构型间的能量差
Classiq框架实现优势
Classiq量子编程框架为这类算法提供了理想的实现平台,主要原因包括:
- 自动量子电路优化:能够自动生成优化的受控哈密顿量模拟电路
- 高级抽象编程:化学家可以专注于算法设计而非底层量子门实现
- 资源高效利用:自动优化电路深度和量子比特使用
算法实现步骤
1. 分子哈密顿量准备
首先需要将目标分子在不同几何构型下的电子哈密顿量转换为量子计算机可操作的泡利字符串表示。Classiq提供了高效的化学哈密顿量转换工具。
2. 受控酉算子构建
实现BPDE算法的关键步骤是构建受控的哈密顿量模拟算子e^(-iHt)。Classiq的合成引擎可以自动优化这一过程,生成资源高效的量子电路。
3. 相位差估计
通过量子干涉效应测量两个相近构型间的能量差:
- 制备参考态和测试态的叠加
- 应用受控时间演化
- 通过量子干涉测量相位差
4. 梯度计算与结构优化
利用测得能量差计算能量梯度: ∇E ≈ (E(x+Δx) - E(x))/Δx
然后使用经典优化算法(如BFGS)更新分子几何结构,迭代直至收敛。
应用示例与验证
以简单双原子分子为例,演示算法实现流程:
- 初始化分子几何结构
- 计算初始FCI能量
- 沿特定坐标方向施加微小位移
- 使用BPDE算法测量能量差
- 计算能量梯度并更新结构
- 重复直至梯度收敛
通过这种方法,可以精确找到分子的平衡几何构型,与经典FCI计算结果一致,同时展示了量子计算的潜在优势。
技术挑战与解决方案
在实现过程中遇到的主要挑战包括:
- 相位估计精度:BPDE算法通过贝叶斯方法提高了小相位差的估计精度
- 噪声影响:Classiq的误差缓解工具帮助提高实际设备上的计算可靠性
- 电路深度优化:自动合成引擎减少了实现复杂哈密顿量模拟所需的量子资源
未来发展方向
这一工作为量子计算在量子化学中的应用开辟了新途径,未来可扩展的方向包括:
- 更大分子系统的处理能力
- 与其他量子化学方法的结合
- 实际量子硬件上的验证
- 振动频率和反应路径的计算
Classiq框架的高级抽象和优化能力将继续为这些发展提供强有力的支持。
通过这种量子-经典混合算法,我们能够在保持FCI精度的同时,探索传统方法难以处理的化学系统,为量子计算在化学领域的实用化迈出了重要一步。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58