Classiq量子计算平台中的药物相互作用预测模型实现
2025-07-07 17:49:52作者:齐冠琰
量子计算在药物研发领域展现出巨大潜力,特别是对于复杂分子间相互作用的预测。本文将详细介绍在Classiq量子计算平台上实现药物相互作用(DDI)预测模型的技术方案。
技术方案概述
该方案采用变分量子分类器(VQC)作为核心算法,结合经典机器学习组件形成混合模型。整体流程包含数据准备、量子模型开发、混合模型集成和模型评估四个关键环节。
数据准备与特征工程
原始数据来自公开的药物相互作用数据集,预处理阶段包括:
- 数据清洗:处理缺失值和异常值
- 特征提取:将药物分子结构转换为数值特征
- 量子编码:采用振幅编码和角度编码技术将特征映射到量子态
分子指纹和基于图的嵌入技术被用于有效表示药物分子结构,这些方法能够捕捉分子拓扑结构和化学键特性。
量子模型设计
在Classiq平台上构建的变分量子分类器具有以下特点:
量子线路设计
- 使用RX、RY等单量子比特旋转门构建参数化层
- 采用CNOT门实现量子比特间的纠缠
- 线路深度和结构通过Classiq平台自动优化
变分参数优化
- 利用SciPy或PyTorch等经典优化器训练参数
- 采用梯度下降法更新量子门参数
- 结合Classiq的自动微分功能实现高效训练
混合模型架构
量子-经典混合架构充分发挥两类计算范式的优势:
- 量子部分:处理高维特征空间和复杂非线性关系
- 经典部分:负责特征预处理和后处理
- 接口层:实现量子态测量结果到经典数据的转换
性能评估与对比
模型评估采用标准机器学习指标:
- 准确率、精确率、召回率和F1分数
- 与经典模型(SVM、神经网络、逻辑回归)的对比实验
- 计算资源消耗分析
实验结果表明,量子增强模型在特定类型的药物相互作用预测任务上展现出优势,特别是在处理高维分子特征时。
实现挑战与解决方案
- 量子资源限制:通过Classiq的线路优化功能降低量子比特需求
- 训练效率:采用参数共享和分层训练策略
- 噪声影响:利用Classiq平台的噪声感知编译功能
应用前景
该技术方案不仅适用于药物相互作用预测,还可扩展至:
- 药物靶点识别
- 分子性质预测
- 化学反应结果预测
量子计算与药物研发的结合正处于快速发展阶段,Classiq平台提供的抽象层次和优化能力大大降低了量子算法实现的难度,为药物研发人员探索量子优势提供了有力工具。
未来工作将集中于更大规模数据集的验证、更复杂量子架构的探索以及实际药物研发管道的集成。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0