基于Classiq库实现全构型相互作用能级数值能量梯度计算的量子算法
2025-07-07 06:32:38作者:冯梦姬Eddie
引言
分子几何优化是计算化学中的核心问题之一,传统方法在计算能量梯度时面临巨大计算复杂度。近期发表在《物理化学快报》上的一篇论文提出了一种创新的量子算法,利用贝叶斯相位差估计(BPDE)技术实现了全构型相互作用(FCI)能级的数值能量梯度计算。本文将详细介绍如何利用Classiq量子计算平台实现这一算法。
算法原理
该量子算法主要包含两个关键技术:
-
两点有限差分法:用于数值计算能量梯度。通过比较两个相近几何构型下的分子能量差来近似能量梯度。
-
贝叶斯相位差估计(BPDE):一种改进的量子相位估计算法,能够精确估计两个不同分子构型间的能量差。相比传统相位估计,BPDE具有更高的精度和效率。
算法的核心思想是将分子几何优化问题转化为一系列量子相位估计问题,通过量子计算机高效求解。
Classiq实现方案
1. 量子程序构建
使用Classiq的高级合成功能,我们可以构建优化的量子程序来实现受控哈密顿量模拟。Classiq的合成引擎能够自动优化量子门序列,显著降低电路深度。
# 示例:使用Classiq构建受控哈密顿量模拟
from classiq import *
# 定义分子哈密顿量参数
hamiltonian_params = ...
# 创建量子程序模型
model = QuantumProgram()
model.hamiltonian_simulation(
hamiltonian=hamiltonian_params,
evolution_time=...,
control_qubits=...,
target_qubits=...
)
# 合成优化量子电路
quantum_circuit = synthesize(model)
2. BPDE算法实现
BPDE算法相比标准相位估计有以下优势:
- 采用贝叶斯推断方法处理测量结果
- 自适应调整测量次数
- 对噪声具有更强鲁棒性
# BPDE算法实现框架
def BPDE_algorithm(quantum_circuit, initial_guess, precision):
posterior = initial_guess
while not converged:
# 选择最优测量点
measurement_point = select_optimal_point(posterior)
# 执行量子电路并获取测量结果
result = execute_circuit(quantum_circuit, measurement_point)
# 更新后验分布
posterior = update_belief(posterior, result)
return posterior.mean
3. 能量梯度计算
结合两点差分法和BPDE算法,能量梯度计算流程如下:
- 选择参考几何构型R₀和微小位移ΔR
- 使用BPDE分别估计E(R₀)和E(R₀+ΔR)
- 计算能量差ΔE = E(R₀+ΔR) - E(R₀)
- 数值梯度近似为ΔE/ΔR
应用示例:分子几何优化
基于上述能量梯度计算,可以实现完整的分子几何优化流程:
- 初始化:设置初始分子几何构型
- 梯度计算:使用量子算法计算当前构型的能量梯度
- 构型更新:按照梯度下降方向更新分子构型
- 收敛判断:检查梯度是否足够小或达到最大迭代次数
这种方法特别适用于传统计算难以处理的大分子系统,有望在量子计算机上实现指数级加速。
性能分析与展望
论文中的数值实验表明,该量子算法能够:
- 准确重现经典FCI计算结果
- 在噪声存在下保持稳健性
- 为中等规模分子提供可行的优化路径
未来发展方向包括:
- 结合变分量子算法进一步提高效率
- 开发针对特定分子体系的专用优化策略
- 探索在近期含噪声量子设备上的实现方案
结论
通过Classiq量子计算平台,我们能够高效实现基于BPDE的全构型相互作用能级数值梯度计算。这种方法为量子计算在计算化学中的应用开辟了新途径,特别是为复杂分子系统的精确几何优化提供了有前景的解决方案。随着量子硬件的不断发展,这类算法有望在材料设计、药物发现等领域发挥重要作用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212