基于Classiq库实现全构型相互作用能级数值能量梯度计算的量子算法
2025-07-07 15:44:55作者:冯梦姬Eddie
引言
分子几何优化是计算化学中的核心问题之一,传统方法在计算能量梯度时面临巨大计算复杂度。近期发表在《物理化学快报》上的一篇论文提出了一种创新的量子算法,利用贝叶斯相位差估计(BPDE)技术实现了全构型相互作用(FCI)能级的数值能量梯度计算。本文将详细介绍如何利用Classiq量子计算平台实现这一算法。
算法原理
该量子算法主要包含两个关键技术:
-
两点有限差分法:用于数值计算能量梯度。通过比较两个相近几何构型下的分子能量差来近似能量梯度。
-
贝叶斯相位差估计(BPDE):一种改进的量子相位估计算法,能够精确估计两个不同分子构型间的能量差。相比传统相位估计,BPDE具有更高的精度和效率。
算法的核心思想是将分子几何优化问题转化为一系列量子相位估计问题,通过量子计算机高效求解。
Classiq实现方案
1. 量子程序构建
使用Classiq的高级合成功能,我们可以构建优化的量子程序来实现受控哈密顿量模拟。Classiq的合成引擎能够自动优化量子门序列,显著降低电路深度。
# 示例:使用Classiq构建受控哈密顿量模拟
from classiq import *
# 定义分子哈密顿量参数
hamiltonian_params = ...
# 创建量子程序模型
model = QuantumProgram()
model.hamiltonian_simulation(
hamiltonian=hamiltonian_params,
evolution_time=...,
control_qubits=...,
target_qubits=...
)
# 合成优化量子电路
quantum_circuit = synthesize(model)
2. BPDE算法实现
BPDE算法相比标准相位估计有以下优势:
- 采用贝叶斯推断方法处理测量结果
- 自适应调整测量次数
- 对噪声具有更强鲁棒性
# BPDE算法实现框架
def BPDE_algorithm(quantum_circuit, initial_guess, precision):
posterior = initial_guess
while not converged:
# 选择最优测量点
measurement_point = select_optimal_point(posterior)
# 执行量子电路并获取测量结果
result = execute_circuit(quantum_circuit, measurement_point)
# 更新后验分布
posterior = update_belief(posterior, result)
return posterior.mean
3. 能量梯度计算
结合两点差分法和BPDE算法,能量梯度计算流程如下:
- 选择参考几何构型R₀和微小位移ΔR
- 使用BPDE分别估计E(R₀)和E(R₀+ΔR)
- 计算能量差ΔE = E(R₀+ΔR) - E(R₀)
- 数值梯度近似为ΔE/ΔR
应用示例:分子几何优化
基于上述能量梯度计算,可以实现完整的分子几何优化流程:
- 初始化:设置初始分子几何构型
- 梯度计算:使用量子算法计算当前构型的能量梯度
- 构型更新:按照梯度下降方向更新分子构型
- 收敛判断:检查梯度是否足够小或达到最大迭代次数
这种方法特别适用于传统计算难以处理的大分子系统,有望在量子计算机上实现指数级加速。
性能分析与展望
论文中的数值实验表明,该量子算法能够:
- 准确重现经典FCI计算结果
- 在噪声存在下保持稳健性
- 为中等规模分子提供可行的优化路径
未来发展方向包括:
- 结合变分量子算法进一步提高效率
- 开发针对特定分子体系的专用优化策略
- 探索在近期含噪声量子设备上的实现方案
结论
通过Classiq量子计算平台,我们能够高效实现基于BPDE的全构型相互作用能级数值梯度计算。这种方法为量子计算在计算化学中的应用开辟了新途径,特别是为复杂分子系统的精确几何优化提供了有前景的解决方案。随着量子硬件的不断发展,这类算法有望在材料设计、药物发现等领域发挥重要作用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492