IVF-HNSW: 百亿级近似最近邻搜索的改进方法
项目介绍
IVF-HNSW 是一个基于 ECCV2018 论文的开源实现,该论文重新审视了倒排索引在处理数十亿规模的近似最近邻(Approximate Nearest Neighbor, ANN)搜索中的应用。本项目专注于优化和提升大规模数据集上的ANN查询效率,特别是对SIFT1B和DEEP1B这样的大数据集进行了测试。它采用了Inverted File (IVF) 结构结合Hierarchical Navigable Small World (HNSW) 索引来加速搜索过程。
项目快速启动
为了快速开始使用 ivf-hnsw,你需要先安装必要的依赖,并配置好环境。下面是基本步骤:
环境准备
确保你的系统上安装了Git、CMake以及支持BLAS的库(如OpenBLAS或MKL)。
获取源码
git clone https://github.com/dbaranchuk/ivf-hnsw.git
cd ivf-hnsw
配置CMake
由于项目需要调整以不构建不必要的部分(如GPU版本和特定测试),替换原Faiss的CMakeLists.txt文件为提供的简化版。
cp faissCMakeLists.txt faiss/CMakeLists.txt
编译项目
根据你的操作系统选择合适的Makefile,并进行编译。
cmake .
make
数据准备
将SIFT1B和DEEP1B的数据文件下载并置于项目的data目录下,以便于运行示例程序。
应用案例和最佳实践
在使用IVF-HNSW进行实际的ANN查询时,关键在于正确配置索引参数,如IVF的分桶数和HNSW的图结构参数。例如,对于图像检索应用,你可以采用以下步骤:
- 构建索引: 使用训练数据构建IVF-HNSW索引。
- 添加数据: 将所有数据点添加到索引中。
- 查询最近邻: 对查询向量执行高效的近似最近邻搜索。
示例代码展示如何创建索引并执行查询(假设已放置适当的数据文件):
#include <iostream>
#include <vector>
#include "faiss/IndexFlat.h"
#include "faiss/IndexIVF.h"
#include "faiss/IndexHNSW.h"
int main() {
// 假设的初始化和加载数据逻辑...
// 构建索引(实际情况需根据数据调整参数)
int nlist = 1000; // IVF的列表数
int M = 32; // HNSW的边数
Faiss::Index *quantizer = new Faiss::IndexFlatL2(dim); // 假设dim是特征维度
Faiss::Index::Metric metric = Faiss::Index::METRIC_L2;
Faiss::IndexIVFHNSW* index = new Faiss::IndexIVFHNSW(quantizer, dim, nlist, M, metric);
// 根据需求添加数据,这里省略具体实现...
// 查询过程
std::vector<float> query_vector(dim); // 填充查询向量
int k = 10; // 找前10个最近邻
std::vector<int> result_ids(k);
std::vector<float> distances(k);
index->search(1, &query_vector[0], k, &distances[0], &result_ids[0]);
// 输出结果或后续处理...
}
典型生态项目
虽然这个项目本身聚焦于改进倒排索引和HNSW算法在大规模ANN搜索的应用,其生态关联主要体现在机器学习和计算机视觉领域。开发者常将其集成进图像识别、文本检索等系统,特别是在需要高效处理大量高维特征数据的场景。这些系统可能会结合其他开源工具如TensorFlow、PyTorch进行模型训练,再利用IVF-HNSW来加速推理阶段的相似性查找。
请注意,具体应用和最佳实践需要根据实际的业务场景和性能要求来详细设计和调优。此外,随着技术的发展,社区可能有更多围绕此项目展开的整合案例和工具,推荐持续关注相关论坛和技术博客获取最新实践。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00