cuhnsw 项目教程
2024-08-30 05:13:34作者:虞亚竹Luna
1、项目介绍
cuhnsw 是一个基于 CUDA 实现的 Hierarchical Navigable Small World Graph 算法库。该项目旨在提供高效的近似最近邻搜索解决方案,适用于需要高性能计算的场景。cuhnsw 通过利用 GPU 的并行计算能力,显著提升了搜索速度和效率。
2、项目快速启动
安装
首先,确保你已经安装了 pip 工具。然后,通过以下命令安装 cuhnsw:
pip install cuhnsw
从源码构建
如果你需要从源码构建项目,可以按照以下步骤进行:
# 克隆仓库和子模块
git clone git@github.com:js1010/cuhnsw.git
cd cuhnsw
git submodule update --init
# 安装依赖
pip install -r requirements.txt
# 生成 proto
python -m grpc_tools.protoc --python_out=cuhnsw/ --proto_path=cuhnsw/proto/ config.proto
# 安装
python setup.py install
示例代码
以下是一个简单的示例,展示如何构建和保存模型,以及如何加载模型并进行搜索:
# 构建和保存模型
import h5py
from cuhnsw import CuHNSW
h5f = h5py.File("glove-50-angular.hdf5", "r")
data = h5f["train"][:].astype(np.float32)
h5f.close()
ch0 = CuHNSW(opt={})
ch0.set_data(data)
ch0.build()
ch0.save_index("cuhnsw_index")
# 加载模型和搜索
import h5py
from cuhnsw import CuHNSW
h5f = h5py.File("glove-50-angular.hdf5", "r")
data = h5f["train"][:].astype(np.float32)
h5f.close()
ch0 = CuHNSW(opt={})
ch0.load_index("cuhnsw_index")
results = ch0.search(data, k=10)
print(results)
3、应用案例和最佳实践
cuhnsw 可以广泛应用于需要高效近似最近邻搜索的场景,例如:
- 图像检索:通过将图像特征向量存储在 HNSW 图中,可以快速检索相似图像。
- 推荐系统:在用户-物品矩阵中,利用 cuhnsw 进行高效的相似用户或物品搜索。
- 自然语言处理:在文本相似度计算中,cuhnsw 可以加速查询与文档的匹配过程。
最佳实践包括:
- 参数调优:根据具体应用场景调整 cuhnsw 的构建参数,以达到最佳性能。
- 索引管理:定期重建索引以保持搜索效率,特别是在数据频繁更新的情况下。
4、典型生态项目
cuhnsw 可以与以下生态项目结合使用,以扩展其功能和应用范围:
- Faiss:Facebook AI Similarity Search,一个高效的向量相似度搜索库,可以与 cuhnsw 结合使用,提供更全面的搜索解决方案。
- Annoy:Approximate Nearest Neighbors Oh Yeah,一个用于近似最近邻搜索的库,可以与 cuhnsw 互补,适用于不同场景。
- Elasticsearch:一个强大的全文搜索和分析引擎,可以与 cuhnsw 结合,提供更丰富的搜索功能。
通过结合这些生态项目,可以构建更强大和灵活的近似最近邻搜索系统。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355