CS231n课程笔记:优化方法(1) - 损失函数可视化与梯度下降
2025-06-24 15:53:37作者:曹令琨Iris
引言
在图像分类任务中,我们通常会遇到三个核心要素:
- 评分函数(Score Function):将原始图像像素映射为分类得分的参数化函数(如线性函数)
- 损失函数(Loss Function):衡量特定参数在训练数据上的预测结果与真实标签的匹配程度
- 优化方法(Optimization):寻找能最小化损失函数的参数的过程
本文将重点探讨第三个要素——优化方法,特别是梯度下降及其变种。
损失函数的可视化理解
高维空间中的损失函数难以直接可视化,但我们可以通过切片技术获得一些直观认识:
一维可视化
随机选择一个权重矩阵W(高维空间中的一个点),沿某个随机方向W₁移动,计算不同位置a的损失值L(W + aW₁),绘制a与L的关系曲线。
二维可视化
选择两个随机方向W₁和W₂,计算L(W + aW₁ + bW₂),用a和b作为坐标轴,用颜色表示损失值。
对于SVM损失函数,其特点是分段线性(piecewise linear),这是由于max(0,-)函数造成的。例如对于一个三类别三样本的例子:
L_0 = max(0, w₁x₀ - w₀x₀ + 1) + max(0, w₂x₀ - w₀x₀ + 1)
L_1 = max(0, w₀x₁ - w₁x₁ + 1) + max(0, w₂x₁ - w₁x₁ + 1)
L_2 = max(0, w₀x₂ - w₂x₂ + 1) + max(0, w₁x₂ - w₂x₂ + 1)
L = (L₀ + L₁ + L₂)/3
这种结构导致损失函数在参数空间呈现"碗状"地形,但扩展到神经网络后,地形会变得更加复杂和非凸。
优化策略探索
1. 随机搜索(最差方法)
bestloss = float("inf")
for num in range(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X_train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
这种方法在CIFAR-10上仅能达到15.5%的准确率,远优于随机猜测(10%),但效率极低。
2. 随机局部搜索
W = np.random.randn(10, 3073) * 0.001
bestloss = float("inf")
for i in range(1000):
step_size = 0.0001
Wtry = W + np.random.randn(10, 3073) * step_size
loss = L(Xtr_cols, Ytr, Wtry)
if loss < bestloss:
W = Wtry
bestloss = loss
这种方法达到了21.4%的准确率,但仍不够高效。
3. 梯度跟随(最佳方法)
最有效的策略是计算损失函数的梯度,沿着梯度下降的方向更新参数。这类似于在山上蒙眼下山时,通过感受脚下坡度来确定最陡下降方向。
梯度计算
数值梯度法(有限差分法)
def eval_numerical_gradient(f, x):
fx = f(x)
grad = np.zeros(x.shape)
h = 0.00001
it = np.nditer(x, flags=['multi_index'])
while not it.finished:
ix = it.multi_index
old_value = x[ix]
x[ix] = old_value + h
fxh = f(x)
x[ix] = old_value
grad[ix] = (fxh - fx) / h
it.iternext()
return grad
特点:
- 实现简单,但计算代价高(需O(n)次函数评估)
- 结果是近似值
- 通常用于梯度检查
解析梯度法
对于SVM损失函数,我们可以直接推导梯度公式:
正确类别的权重梯度:
∇_{w_{y_i}} L_i = - (∑_{j≠y_i} 1(w_j^T x_i - w_{y_i}^T x_i + Δ > 0)) x_i
错误类别的权重梯度:
∇_{w_j} L_i = 1(w_j^T x_i - w_{y_i}^T x_i + Δ > 0) x_i
特点:
- 计算精确且快速
- 实现容易出错,需要与数值梯度法验证
梯度下降优化
基本形式
while True:
weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad
小批量梯度下降(Mini-batch GD)
while True:
data_batch = sample_training_data(data, 256) # 256个样本
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad
优势:
- 更频繁的参数更新
- 计算效率更高(利用向量化操作)
- 实践中最常用
随机梯度下降(SGD)
小批量大小为1的极端情况,实际中较少使用,因为无法充分利用向量化计算的优势。
关键概念总结
- 梯度方向:函数值增长最速方向,负梯度方向即下降最速方向
- 步长(学习率):最重要的超参数之一,过大导致震荡,过小收敛缓慢
- 梯度计算:数值法简单但低效,解析法高效但需验证
- 批量处理:利用数据相关性提高计算效率
在后续学习中,我们将探讨更先进的优化算法(如动量法、自适应方法等),这些方法都是在基本梯度下降基础上的改进。理解这些基础概念对于掌握深度学习优化至关重要。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
293
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.68 K
暂无简介
Dart
542
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
592
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
82
116