FlashAttention中基于cu_seqlens的高效变长序列注意力计算机制
背景介绍
在自然语言处理任务中,处理变长序列是一个常见需求。传统方法通常采用填充(padding)方式将所有序列补齐到相同长度,但这会带来显著的计算资源浪费。FlashAttention项目通过引入cu_seqlens机制,实现了对变长序列的高效注意力计算,避免了填充带来的计算开销。
cu_seqlens的核心作用
cu_seqlens是FlashAttention中处理变长序列的关键数据结构,它记录了每个序列在拼接后大张量中的起始和结束位置。与传统的填充方法相比,cu_seqlens具有以下优势:
- 内存效率:不需要为短序列分配额外的填充空间
- 计算效率:避免对填充token进行无意义的计算
- 灵活性:支持batch内各序列长度差异大的场景
实现机制解析
FlashAttention通过以下技术手段实现了基于cu_seqlens的高效计算:
1. 并行计算架构
项目采用CUDA的线程块(thread block)并行机制,每个线程块负责处理一个注意力头的一个序列。线程块通过查询cu_seqlens获取序列的起始和结束索引,从而确定需要计算的范围。
2. 内核函数设计
FlashAttention提供了两套API接口:
- 常规fwd/bwd接口:处理等长序列
- varlen_fwd/varlen_bwd接口:处理变长序列
这两类接口最终都会调用相同的底层内核函数(run_mha_fwd和run_mha_bwd),通过统一的处理流程实现功能。
3. BlockInfo数据结构
内核函数中使用BlockInfo结构体来存储查询(Q)、键(K)、值(V)的偏移量。这些偏移量基于cu_seqlen_q和cu_seqlen_k计算得出,使得注意力计算可以按行进行(compute_attn_1rowblock)。这种设计使得每行QKV可以支持不同的长度。
技术优势
相比传统填充方法,FlashAttention的cu_seqlens方案具有明显优势:
- 计算粒度更细:按行计算注意力,避免整体填充
- 资源利用率高:只计算有效token,不浪费算力在填充token上
- 扩展性强:支持batch内各序列长度差异大的场景
- 实现统一:通过同一套内核函数处理等长和变长序列
应用场景
这种基于cu_seqlens的变长序列处理机制特别适合以下场景:
- 处理不同长度的文档
- 对话系统中处理不等长的对话历史
- 任何需要batch处理变长序列的NLP任务
总结
FlashAttention通过创新的cu_seqlens机制和精细的并行计算设计,有效解决了变长序列处理中的计算效率问题。这种方案不仅提升了计算效率,还保持了实现的简洁性和统一性,为大规模语言模型训练提供了重要技术支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00