Graph-Bert 项目使用教程
2024-09-18 11:26:32作者:贡沫苏Truman
1. 项目目录结构及介绍
Graph-Bert 项目的目录结构如下:
Graph-Bert/
├── data/
│ └── cora/
├── result/
├── LICENSE
├── README.md
├── script_1_preprocess.py
├── script_2_pre_train.py
├── script_3_fine_tuning.py
├── script_4_evaluation_plots.py
└── code/
├── base_class/
├── DatasetLoader.py
├── MethodGraphBertNodeClassification.py
├── MethodGraphBertGraphClustering.py
├── MethodGraphBertNodeConstruct.py
├── MethodGraphBertGraphRecovery.py
├── MethodBertComp.py
├── MethodGraphBert.py
├── MethodWLNodeColoring.py
├── MethodGraphBatching.py
├── MethodHopDistance.py
├── ResultSaving.py
├── EvaluateAcc.py
├── EvaluateClustering.py
└── Settings.py
目录结构介绍
- data/: 存放数据集的目录,例如 Cora 数据集。
- result/: 存放实验结果的目录。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- script_1_preprocess.py: 数据预处理脚本。
- script_2_pre_train.py: 模型预训练脚本。
- script_3_fine_tuning.py: 模型微调脚本。
- script_4_evaluation_plots.py: 结果评估和绘图脚本。
- code/: 包含项目的核心代码,分为多个模块:
- base_class/: 基础类定义。
- DatasetLoader.py: 数据加载模块。
- MethodGraphBertNodeClassification.py: 节点分类任务模块。
- MethodGraphBertGraphClustering.py: 图聚类任务模块。
- MethodGraphBertNodeConstruct.py: 节点构造任务模块。
- MethodGraphBertGraphRecovery.py: 图结构恢复任务模块。
- MethodBertComp.py: BERT 组件模块。
- MethodGraphBert.py: Graph-Bert 模型模块。
- MethodWLNodeColoring.py: WL 节点着色模块。
- MethodGraphBatching.py: 子图批处理模块。
- MethodHopDistance.py: 节点跳数距离计算模块。
- ResultSaving.py: 结果保存模块。
- EvaluateAcc.py: 准确率评估模块。
- EvaluateClustering.py: 聚类评估模块。
- Settings.py: 实验设置模块。
2. 项目启动文件介绍
script_1_preprocess.py
该脚本用于数据预处理,主要包括以下步骤:
- 加载数据集。
- 计算节点 WL 代码。
- 计算节点跳数距离。
- 生成子图批次。
script_2_pre_train.py
该脚本用于模型的预训练,主要包括以下步骤:
- 加载预处理后的数据。
- 进行节点属性重构任务。
- 进行图结构恢复任务。
script_3_fine_tuning.py
该脚本用于模型的微调,主要包括以下步骤:
- 加载预训练模型。
- 进行节点分类任务。
- 进行图聚类任务。
script_4_evaluation_plots.py
该脚本用于结果的评估和绘图,主要包括以下步骤:
- 加载实验结果。
- 计算评估指标。
- 生成评估图表。
3. 项目的配置文件介绍
Graph-Bert 项目没有显式的配置文件,但可以通过修改脚本中的参数来调整实验设置。主要的参数设置在 Settings.py
文件中,包括:
- learning_rate: 学习率。
- weight_decay: 权重衰减。
- max_epoch: 最大训练轮数。
- spy_tag: 是否启用调试模式。
- load_pretrained_path: 预训练模型路径。
- save_pretrained_path: 保存预训练模型路径。
通过修改这些参数,可以灵活地调整模型的训练和评估过程。
以上是 Graph-Bert 项目的使用教程,希望对你有所帮助!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5