Graph-Bert:基于注意力机制的图表示学习
2024-09-17 09:53:34作者:乔或婵
项目介绍
Graph-Bert 是一个创新的开源项目,专注于利用注意力机制来学习图表示。该项目由 IFM Lab 开发,基于其研究论文《Graph-Bert: Only Attention is Needed for Learning Graph Representations》。Graph-Bert 通过引入图神经网络(GNN)和变压器(Transformer)的结合,提供了一种高效且强大的方法来处理图数据。
项目技术分析
Graph-Bert 的核心技术在于其独特的模型架构,该架构结合了图神经网络和变压器的优势。具体来说,Graph-Bert 使用节点 WL 代码、基于亲密度的子图批次和节点跳跃距离作为先验输入,通过预训练和微调两个阶段来实现图表示学习。
技术要点:
- 节点 WL 代码:用于捕捉节点在图中的结构信息。
- 基于亲密度的子图批次:通过亲密度的计算,生成子图批次,增强模型的局部信息捕捉能力。
- 节点跳跃距离:计算节点之间的跳跃距离,帮助模型理解图的拓扑结构。
Graph-Bert 的预训练阶段包括节点属性重构和图结构恢复,而微调阶段则用于节点分类和图聚类任务。
项目及技术应用场景
Graph-Bert 的应用场景广泛,特别适用于需要处理复杂图结构的任务,如社交网络分析、推荐系统、生物信息学中的蛋白质相互作用网络分析等。其强大的图表示学习能力使得 Graph-Bert 在这些领域中能够提供更精准的预测和分析。
典型应用:
- 社交网络分析:通过 Graph-Bert 学习用户之间的关系,进行社区检测和影响力分析。
- 推荐系统:利用 Graph-Bert 捕捉用户和物品之间的复杂关系,提升推荐准确性。
- 生物信息学:在蛋白质相互作用网络中,Graph-Bert 可以帮助识别关键蛋白质和潜在的药物靶点。
项目特点
- 创新性:Graph-Bert 首次将变压器架构应用于图表示学习,打破了传统图神经网络的局限。
- 高效性:通过注意力机制,Graph-Bert 能够高效地捕捉图中的复杂关系,提升学习效率。
- 灵活性:项目提供了丰富的脚本和工具,用户可以根据需求进行定制化开发和应用。
- 社区支持:IFM Lab 提供了详细的文档和社区支持,帮助用户快速上手和解决问题。
总结
Graph-Bert 是一个具有前瞻性和实用性的开源项目,它不仅在学术研究中具有重要意义,也在实际应用中展现了巨大的潜力。无论你是研究者还是开发者,Graph-Bert 都值得你深入探索和应用。
立即访问项目仓库: Graph-Bert GitHub
通过 Graph-Bert,让我们一起探索图表示学习的无限可能!
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219