首页
/ KG-BERT: BERT for Knowledge Graph Completion 使用教程

KG-BERT: BERT for Knowledge Graph Completion 使用教程

2024-09-14 14:28:25作者:郜逊炳

1. 项目介绍

KG-BERT 是一个基于 BERT 模型的知识图谱补全项目。该项目通过将知识图谱中的三元组(实体-关系-实体)视为文本序列,并利用 BERT 模型进行建模,从而实现知识图谱的补全任务。KG-BERT 能够有效地处理三元组分类、关系预测和链接预测等任务,并在多个基准知识图谱数据集上取得了优异的性能。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 Python 3.5+ 版本,并安装项目所需的依赖包:

pip install -r requirements.txt

2.2 数据准备

项目提供了一些基准知识图谱数据集,位于 data 目录下。每个数据集包含以下文件:

  • entity2text.txtentity2textlong.txt:实体的文本描述。
  • relation2text.txt:关系的文本描述。

2.3 运行示例

以下是一些常见的任务示例,包括三元组分类、关系预测和链接预测。

2.3.1 三元组分类

以 WN11 数据集为例:

python run_bert_triple_classifier.py --task_name kg --do_train --do_eval --do_predict --data_dir ./data/WN11 --bert_model bert-base-uncased --max_seq_length 20 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 3.0 --output_dir ./output_WN11/ --gradient_accumulation_steps 1 --eval_batch_size 512

2.3.2 关系预测

以 FB15K 数据集为例:

python3 run_bert_relation_prediction.py --task_name kg --do_train --do_eval --do_predict --data_dir ./data/FB15K --bert_model bert-base-cased --max_seq_length 25 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 20.0 --output_dir ./output_FB15K/ --gradient_accumulation_steps 1 --eval_batch_size 512

2.3.3 链接预测

以 WN18RR 数据集为例:

python3 run_bert_link_prediction.py --task_name kg --do_train --do_eval --do_predict --data_dir ./data/WN18RR --bert_model bert-base-cased --max_seq_length 50 --train_batch_size 32 --learning_rate 5e-5 --num_train_epochs 5.0 --output_dir ./output_WN18RR/ --gradient_accumulation_steps 1 --eval_batch_size 5000

3. 应用案例和最佳实践

3.1 三元组分类

三元组分类任务旨在判断给定的三元组是否正确。KG-BERT 通过将三元组转换为文本序列,并利用 BERT 模型进行分类,能够有效地识别正确的三元组。

3.2 关系预测

关系预测任务旨在预测两个实体之间的关系。KG-BERT 通过输入两个实体的文本描述,利用 BERT 模型预测它们之间的关系,适用于知识图谱中的关系推理任务。

3.3 链接预测

链接预测任务旨在预测知识图谱中缺失的链接。KG-BERT 通过输入实体和关系的文本描述,利用 BERT 模型预测缺失的链接,适用于知识图谱的补全任务。

4. 典型生态项目

4.1 BERT

KG-BERT 基于 BERT 模型,BERT 是一种预训练语言模型,广泛应用于自然语言处理任务。BERT 通过双向 Transformer 编码器捕捉上下文信息,为 KG-BERT 提供了强大的文本表示能力。

4.2 PyTorch

KG-BERT 使用 PyTorch 框架进行模型训练和推理。PyTorch 是一个开源的深度学习框架,提供了灵活的 API 和强大的计算能力,适用于各种深度学习任务。

4.3 Hugging Face Transformers

Hugging Face Transformers 是一个开源库,提供了大量预训练语言模型,包括 BERT。KG-BERT 可以与 Hugging Face Transformers 结合使用,方便地加载和使用预训练模型。

通过以上模块的介绍和示例,你可以快速上手并应用 KG-BERT 进行知识图谱的补全任务。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8