PPNP与APPNP模型指南:基于Personalized PageRank的图神经网络预测与传播
2024-08-24 13:48:01作者:韦蓉瑛
1. 项目介绍
PPNP(Predict then Propagate: Graph Neural Networks meet Personalized PageRank)是ICLR 2019会议上提出的一种图神经网络(GNN)模型,由作者Joachim Gasteiger等人开发。该项目实现并扩展了论文中提到的PPNP及APPNP(Approximate Personalized PageRank-based Propagation)模型,旨在通过结合预测步骤与基于个性化PageRank的信息扩散机制,改进节点分类任务中的性能。此GitHub仓库https://github.com/gasteigerjo/ppnp提供了完整的代码实现,便于研究人员和开发者探索和利用这种先进的图学习技术。
2. 快速启动
要快速开始使用PPNP或APPNP模型,首先确保你的环境已经安装了必要的依赖项,如PyTorch。以下是一步一步的指导:
安装
git clone https://github.com/gasteigerjo/ppnp.git
cd pppn
pip install -r requirements.txt
运行示例
假设你想在一个标准的数据集上运行PPNP,比如Cora。以下是简化的命令示例:
from pnp.models import PPNP
from pnp.data import load_dataset
# 加载数据
data = load_dataset('cora')
# 初始化并训练PPNP模型
model = PPNP(hidden_channels=64, out_channels=data.num_classes)
model.fit(data.x, data.edge_index)
# 预测
predictions = model.predict(data.x, data.edge_index)
# 注意: 实际使用时需调用适当的训练循环和损失函数,这里仅为示意
请参照项目内的具体说明和例子文件以了解完整细节和训练流程。
3. 应用案例与最佳实践
在实际应用中,PPNP和APPNP模型可以广泛应用于推荐系统、社交网络分析、化学结构预测等多种场景。最佳实践包括:
- 特征初始化:高质量的初始特征可以显著提升模型性能。
- 图结构优化:对原始图进行结构调整,如加入超边或者社区发现后的重连,可改善结果。
- 迭代次数调整:个性化PageRank过程中的K值(迭代次数)需要根据数据特性和资源限制精心选择。
- 融合策略:与其它图学习模型的结果融合,如GCN,以获得更鲁棒的预测效果。
4. 典型生态项目
在图神经网络领域,PPNP作为基础框架,其生态系统包含了多个相关项目和库,用于支持不同的应用场景和进一步研究:
- DGL:深度图学习库,支持多种GNN模型的实现,提供了丰富的图数据和功能扩展。
- Stellargraph:基于Python的复杂网络分析和图机器学习库,提供了类似的功能和更多的算法实现。
- GraphBolt:专注大规模图学习的工具包,适用于训练大规模图数据的模型,包括但不限于PPNP类模型。
这些生态项目的共存促进了图神经网络领域的创新和应用,使开发者能够构建更为复杂的系统和解决方案。
本指南旨在提供一个起点,帮助您快速理解和运用PPNP和APPNP模型。深入探索项目文档和实验将带来更加定制化和高效的应用体验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355