PPNP与APPNP模型指南:基于Personalized PageRank的图神经网络预测与传播
2024-08-24 23:44:00作者:韦蓉瑛
1. 项目介绍
PPNP(Predict then Propagate: Graph Neural Networks meet Personalized PageRank)是ICLR 2019会议上提出的一种图神经网络(GNN)模型,由作者Joachim Gasteiger等人开发。该项目实现并扩展了论文中提到的PPNP及APPNP(Approximate Personalized PageRank-based Propagation)模型,旨在通过结合预测步骤与基于个性化PageRank的信息扩散机制,改进节点分类任务中的性能。此GitHub仓库https://github.com/gasteigerjo/ppnp提供了完整的代码实现,便于研究人员和开发者探索和利用这种先进的图学习技术。
2. 快速启动
要快速开始使用PPNP或APPNP模型,首先确保你的环境已经安装了必要的依赖项,如PyTorch。以下是一步一步的指导:
安装
git clone https://github.com/gasteigerjo/ppnp.git
cd pppn
pip install -r requirements.txt
运行示例
假设你想在一个标准的数据集上运行PPNP,比如Cora。以下是简化的命令示例:
from pnp.models import PPNP
from pnp.data import load_dataset
# 加载数据
data = load_dataset('cora')
# 初始化并训练PPNP模型
model = PPNP(hidden_channels=64, out_channels=data.num_classes)
model.fit(data.x, data.edge_index)
# 预测
predictions = model.predict(data.x, data.edge_index)
# 注意: 实际使用时需调用适当的训练循环和损失函数,这里仅为示意
请参照项目内的具体说明和例子文件以了解完整细节和训练流程。
3. 应用案例与最佳实践
在实际应用中,PPNP和APPNP模型可以广泛应用于推荐系统、社交网络分析、化学结构预测等多种场景。最佳实践包括:
- 特征初始化:高质量的初始特征可以显著提升模型性能。
- 图结构优化:对原始图进行结构调整,如加入超边或者社区发现后的重连,可改善结果。
- 迭代次数调整:个性化PageRank过程中的K值(迭代次数)需要根据数据特性和资源限制精心选择。
- 融合策略:与其它图学习模型的结果融合,如GCN,以获得更鲁棒的预测效果。
4. 典型生态项目
在图神经网络领域,PPNP作为基础框架,其生态系统包含了多个相关项目和库,用于支持不同的应用场景和进一步研究:
- DGL:深度图学习库,支持多种GNN模型的实现,提供了丰富的图数据和功能扩展。
- Stellargraph:基于Python的复杂网络分析和图机器学习库,提供了类似的功能和更多的算法实现。
- GraphBolt:专注大规模图学习的工具包,适用于训练大规模图数据的模型,包括但不限于PPNP类模型。
这些生态项目的共存促进了图神经网络领域的创新和应用,使开发者能够构建更为复杂的系统和解决方案。
本指南旨在提供一个起点,帮助您快速理解和运用PPNP和APPNP模型。深入探索项目文档和实验将带来更加定制化和高效的应用体验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216