推荐使用PPNP与APPNP:图神经网络的革命性实现
2024-05-21 18:03:13作者:柯茵沙
在这个快速发展的AI时代,图神经网络(GNN)已成为处理复杂网络数据的关键工具。今天,我们向您推荐一个来自ICLR 2019的创新项目——PPNP(Predict then Propagate Node Prediction)和APPNP(Approximate Personalized Propagation of Neural Predictions),由Johannes Gasteiger等人提出。该项目不仅提供了TensorFlow和PyTorch两种语言的实现,还为研究者提供了一个直观易用的框架来探索图神经网络与个性化PageRank的结合。
项目介绍
PPNP和APPNP的核心思想是将预测与传播相结合,利用图结构进行信息传递,从而改进节点分类任务的性能。项目中包含了用于复现论文结果的代码和预训练模型,并且支持多种标准数据集,如Cora-ML, Citeseer和PubMed等。
项目技术分析
该项目基于TensorFlow 1.6到2.0之间以及PyTorch 1.5以上的版本,依赖于NumPy、SciPy等基础库。其亮点在于它巧妙地融合了图神经网络(GNN)与个性化PageRank算法。GNN负责从节点特征中学习表示,而PageRank则指导这些表示在图中的传播,以捕获节点间的全局依赖关系。通过这种预测-传播机制,PPNP和APPNP可以在保持计算效率的同时提高模型的准确性。
应用场景
- 学术网络分析:例如,推荐相关的科研文献、预测论文的影响因子。
- 社交网络挖掘:识别社区结构,预测用户行为或兴趣。
- 生物信息学:解析蛋白质相互作用网络,预测药物靶点。
- 推荐系统:基于用户和商品之间的交互模式,推荐个性化内容。
项目特点
- 灵活可扩展:支持TensorFlow和PyTorch两种主流深度学习框架,方便开发者选择合适的环境。
- 易于上手:提供详细的
simple_example_tensorflow.ipynb和simple_example_pytorch.ipynb示例笔记本,即使是初学者也能轻松上手。 - 复现研究:
reproduce_results.ipynb笔记本展示了如何复现论文中的实验结果,增强了研究的透明度和可信度。 - 全面的文档:清晰的代码结构和文档说明,使得项目易于理解和应用。
如果你正在寻找一种能够高效处理图数据的先进方法,或者对图神经网络和个性化PageRank的集成感兴趣,那么PPNP和APPNP无疑是一个值得尝试的优秀项目。立即加入,开启你的图数据探索之旅!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
79
113
仓颉编程语言运行时与标准库。
Cangjie
122
97
仓颉编程语言测试用例。
Cangjie
34
71
暂无简介
Dart
539
118
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
119