推荐:基于稀疏对应关系的神经引导RANSAC(NG-RANSAC)
2024-05-22 11:33:57作者:郁楠烈Hubert
一、项目介绍
NG-RANSAC是一种用于从包含异常值和噪声的数据集中拟合参数模型的通用方法,特别针对在一对图像之间估计像平面几何——如基本矩阵或本质矩阵的任务。通过神经网络预测每个数据点(此处为对应关系)的采样概率,RANSAC利用这些概率选择最小集来计算模型假设。与传统RANSAC类似,最终模型由内点的数量决定。
二、项目技术分析
该项目是基于PyTorch实现,包括一个自定义C++扩展,需编译并安装。NG-RANSAC支持以下功能:
- 预测采样概率的神经网络。
- 使用预训练模型或自定义网络进行模型拟合。
- 自监督学习,即使无地面实况注释也能训练。
其关键优势在于不需要模型拟合管道中组件的可微分性,如最小求解器、细化过程或损失函数。
三、项目及技术应用场景
NG-RANSAC适用于各种视觉任务,包括但不限于:
- 图像配准。
- 结构从运动(Structure from Motion, SfM)。
- 相机重定位。
- 深度图估计。
- 3D重建。
四、项目特点
- 高效鲁棒性:通过神经网络引导的采样策略,提高处理异常值的能力。
- 灵活易用:与特定数据集、特征检测和匹配策略兼容,提供预训练模型。
- 自我学习能力:即使在没有标签的情况下,也能够通过自监督学习训练。
- 广泛适用性:不仅限于基础和本质矩阵的估计,可以扩展到其他参数模型。
安装与快速启动
首先确保Python环境中有PyTorch(1.2.0)和OpenCV(3.4.2)。之后,执行命令安装项目依赖并编译C++扩展:
cd ngransac
python setup.py install
然后,使用ngransac_demo.py脚本演示如何对图像对应用NG-RANSAC和标准RANSAC:
python ngransac_demo.py -img1 images/demo1.jpg -fl1 900 -img2 images/demo2.jpg -fl2 900
运行结果将保存为'demo.png',显示两种方法的内点比较。
总之,NG-RANSAC为解决图像序列中的几何结构估计问题提供了强大工具,并且易于集成到现有系统中。无论是学术研究还是实际应用开发,它都是值得尝试的优秀开源项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178