推荐高效神经矩阵分解(ENMF)——下一代推荐系统的核心工具
2024-06-12 02:51:47作者:秋阔奎Evelyn
在这个数据爆炸的时代,个性化推荐已成为信息检索和用户体验的重要组成部分。今天,我们向您隆重推荐一个强大的开源项目——ENMF,它基于《一种有效的适应性转移神经网络用于社会感知推荐》(SIGIR'19)和《无采样高效神经矩阵分解推荐》(TOIS'20)两篇论文的实现。这个模型将深度学习与经典矩阵分解技术相结合,以突破性的效率和准确性革新了推荐系统的构建。
项目介绍 ENMF是Efficient Neural Matrix Factorization的缩写,是一种创新的推荐算法,它的核心在于结合了神经网络的表达能力和矩阵分解的数学精巧,旨在提高预测精度并减少计算资源的需求。ENMF无需采样,使得模型训练过程更为稳定且高效。
项目技术分析 ENMF利用神经网络的非线性特性进行特征学习,并通过矩阵分解捕捉用户-物品交互模式。独特的负例加权策略使模型能够处理稀疏数据集,提高对未观察到的数据点的权重,从而在保持模型复杂度较低的同时,增强了推荐效果。
应用场景 ENMF广泛适用于各种推荐场景,如电商商品推荐、社交媒体内容推广、音乐或电影推荐等。特别适合数据量巨大、数据稀疏性高以及需要实时更新推荐列表的平台。
项目特点
- 高效无采样:ENMF摒弃传统的负例采样策略,直接处理全量数据,减少了训练中的随机性,提高了模型的一致性。
- 适应性强:能有效应对高维度、稀疏的用户行为数据,特别适合社交网络环境下的推荐任务。
- 参数可调:模型参数包括dropout率和非观测数据的权重,可根据不同数据集进行精细化调整,确保最佳性能。
- 开源开放:项目提供清晰的代码示例和详细的运行指南,便于开发者理解和应用。
对比其他近期的推荐方法,例如LightGCN、NBPO、LCFN、DHCF和SRNS,ENMF在多个基准数据集上的表现都相当出色,尤其是在Recall和NDCG指标上,显示出卓越的推荐准确性和召回率。
如果您正寻找一个高效的推荐系统解决方案或者有兴趣深入研究推荐算法,ENMF无疑是值得尝试的选择。立即加入我们的社区,探索ENMF带来的无限可能!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135