FlagEmbedding项目训练过程中学习率异常问题分析与解决
2025-05-25 05:39:36作者:庞队千Virginia
问题背景
在使用FlagEmbedding项目进行统一微调(unified_finetune)时,部分用户遇到了一个典型错误提示:"tried to get lr value before scheduler/optimizer started stepping, returning lr=0"。这个错误会导致模型训练过程中学习率始终显示为0,影响模型的正常收敛和性能表现。
错误现象分析
从日志中可以观察到几个关键现象:
- 训练初期就出现学习率为0的警告信息
- 尽管loss值有变化,但梯度范数(grad_norm)显示为0
- 学习率调度器似乎没有正常工作
- 错误信息明确指出了学习率调度器与优化器的步进顺序问题
根本原因
经过技术分析,这个问题主要源于DeepSpeed配置与训练参数的冲突。具体表现为:
- 在DeepSpeed配置(ds_config.json)中同时启用了fp16和bf16混合精度训练
- 训练参数(TrainingArguments)中也设置了fp16=True
- 这种双重设置导致了学习率调度器的初始化异常
- 优化器和调度器的步进顺序出现混乱
解决方案
针对这个问题,我们推荐以下几种解决方案:
方案一:统一精度设置
修改训练参数,保持精度设置的一致性:
# 修改前
TrainingArguments(fp16=True, ...)
# 修改后
TrainingArguments(fp16=False, ...) # 仅依赖DeepSpeed配置
方案二:调整DeepSpeed配置
简化DeepSpeed配置,避免混合精度冲突:
{
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 12,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": false # 禁用bf16
}
}
方案三:检查调度器配置
确保学习率调度器的参数正确初始化:
{
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-5,
"warmup_num_steps": 1000,
"total_num_steps": 10000
}
}
}
最佳实践建议
- 精度选择一致性:在DeepSpeed配置和训练参数中保持一致的精度设置,避免同时启用fp16和bf16
- 调度器验证:训练初期添加检查点,验证学习率是否按预期变化
- 梯度监控:密切关注梯度范数(grad_norm)的变化,确保模型参数正常更新
- 版本兼容性:确保使用的PyTorch、DeepSpeed和FlagEmbedding版本相互兼容
总结
FlagEmbedding项目中的学习率异常问题通常源于配置冲突,特别是混合精度训练设置的不一致。通过统一精度配置、合理设置调度器参数,可以有效避免此类问题。在实际应用中,建议用户仔细检查训练配置,确保各组件协调工作,以获得最佳的模型训练效果。
对于大规模Embedding模型的训练,配置的精细调整尤为重要。理解底层原理并结合具体任务需求进行优化,才能充分发挥FlagEmbedding框架的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
263
295
暂无简介
Dart
708
168
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
178
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
836
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
686
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
410
130