FlagEmbedding项目训练过程中学习率异常问题分析与解决
2025-05-25 04:14:11作者:庞队千Virginia
问题背景
在使用FlagEmbedding项目进行统一微调(unified_finetune)时,部分用户遇到了一个典型错误提示:"tried to get lr value before scheduler/optimizer started stepping, returning lr=0"。这个错误会导致模型训练过程中学习率始终显示为0,影响模型的正常收敛和性能表现。
错误现象分析
从日志中可以观察到几个关键现象:
- 训练初期就出现学习率为0的警告信息
- 尽管loss值有变化,但梯度范数(grad_norm)显示为0
- 学习率调度器似乎没有正常工作
- 错误信息明确指出了学习率调度器与优化器的步进顺序问题
根本原因
经过技术分析,这个问题主要源于DeepSpeed配置与训练参数的冲突。具体表现为:
- 在DeepSpeed配置(ds_config.json)中同时启用了fp16和bf16混合精度训练
- 训练参数(TrainingArguments)中也设置了fp16=True
- 这种双重设置导致了学习率调度器的初始化异常
- 优化器和调度器的步进顺序出现混乱
解决方案
针对这个问题,我们推荐以下几种解决方案:
方案一:统一精度设置
修改训练参数,保持精度设置的一致性:
# 修改前
TrainingArguments(fp16=True, ...)
# 修改后
TrainingArguments(fp16=False, ...) # 仅依赖DeepSpeed配置
方案二:调整DeepSpeed配置
简化DeepSpeed配置,避免混合精度冲突:
{
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 12,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": false # 禁用bf16
}
}
方案三:检查调度器配置
确保学习率调度器的参数正确初始化:
{
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-5,
"warmup_num_steps": 1000,
"total_num_steps": 10000
}
}
}
最佳实践建议
- 精度选择一致性:在DeepSpeed配置和训练参数中保持一致的精度设置,避免同时启用fp16和bf16
- 调度器验证:训练初期添加检查点,验证学习率是否按预期变化
- 梯度监控:密切关注梯度范数(grad_norm)的变化,确保模型参数正常更新
- 版本兼容性:确保使用的PyTorch、DeepSpeed和FlagEmbedding版本相互兼容
总结
FlagEmbedding项目中的学习率异常问题通常源于配置冲突,特别是混合精度训练设置的不一致。通过统一精度配置、合理设置调度器参数,可以有效避免此类问题。在实际应用中,建议用户仔细检查训练配置,确保各组件协调工作,以获得最佳的模型训练效果。
对于大规模Embedding模型的训练,配置的精细调整尤为重要。理解底层原理并结合具体任务需求进行优化,才能充分发挥FlagEmbedding框架的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178