FlagEmbedding项目训练过程中学习率异常问题分析与解决
2025-05-25 20:28:06作者:庞队千Virginia
问题背景
在使用FlagEmbedding项目进行统一微调(unified_finetune)时,部分用户遇到了一个典型错误提示:"tried to get lr value before scheduler/optimizer started stepping, returning lr=0"。这个错误会导致模型训练过程中学习率始终显示为0,影响模型的正常收敛和性能表现。
错误现象分析
从日志中可以观察到几个关键现象:
- 训练初期就出现学习率为0的警告信息
- 尽管loss值有变化,但梯度范数(grad_norm)显示为0
- 学习率调度器似乎没有正常工作
- 错误信息明确指出了学习率调度器与优化器的步进顺序问题
根本原因
经过技术分析,这个问题主要源于DeepSpeed配置与训练参数的冲突。具体表现为:
- 在DeepSpeed配置(ds_config.json)中同时启用了fp16和bf16混合精度训练
- 训练参数(TrainingArguments)中也设置了fp16=True
- 这种双重设置导致了学习率调度器的初始化异常
- 优化器和调度器的步进顺序出现混乱
解决方案
针对这个问题,我们推荐以下几种解决方案:
方案一:统一精度设置
修改训练参数,保持精度设置的一致性:
# 修改前
TrainingArguments(fp16=True, ...)
# 修改后
TrainingArguments(fp16=False, ...) # 仅依赖DeepSpeed配置
方案二:调整DeepSpeed配置
简化DeepSpeed配置,避免混合精度冲突:
{
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 12,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": false # 禁用bf16
}
}
方案三:检查调度器配置
确保学习率调度器的参数正确初始化:
{
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-5,
"warmup_num_steps": 1000,
"total_num_steps": 10000
}
}
}
最佳实践建议
- 精度选择一致性:在DeepSpeed配置和训练参数中保持一致的精度设置,避免同时启用fp16和bf16
- 调度器验证:训练初期添加检查点,验证学习率是否按预期变化
- 梯度监控:密切关注梯度范数(grad_norm)的变化,确保模型参数正常更新
- 版本兼容性:确保使用的PyTorch、DeepSpeed和FlagEmbedding版本相互兼容
总结
FlagEmbedding项目中的学习率异常问题通常源于配置冲突,特别是混合精度训练设置的不一致。通过统一精度配置、合理设置调度器参数,可以有效避免此类问题。在实际应用中,建议用户仔细检查训练配置,确保各组件协调工作,以获得最佳的模型训练效果。
对于大规模Embedding模型的训练,配置的精细调整尤为重要。理解底层原理并结合具体任务需求进行优化,才能充分发挥FlagEmbedding框架的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K