如何使用 ShenYu Helm Chart 部署和管理 Apache ShenYu API 网关
引言
在现代微服务架构中,API 网关扮演着至关重要的角色。它不仅能够统一管理外部请求,还能提供负载均衡、安全认证、流量控制等功能。Apache ShenYu 是一个异步、高性能、跨语言的响应式 API 网关,广泛应用于各种微服务场景中。为了简化 ShenYu 的部署和管理,Apache 社区提供了 Helm Chart 工具,使得用户可以通过 Kubernetes 快速部署和管理 ShenYu。
本文将详细介绍如何使用 ShenYu Helm Chart 完成 Apache ShenYu API 网关的部署和管理任务,帮助读者快速上手并充分利用这一强大的工具。
主体
准备工作
环境配置要求
在开始使用 ShenYu Helm Chart 之前,确保你的环境满足以下要求:
- Kubernetes 集群:你需要一个运行中的 Kubernetes 集群。如果没有,可以通过 Minikube、Kind 或云服务提供商(如 GKE、EKS)快速创建一个本地或云端的 Kubernetes 集群。
- Helm 工具:Helm 是 Kubernetes 的包管理工具,用于管理和部署应用程序。确保你已经安装了 Helm 3.x 版本。
- Kubernetes 插件(可选):如果你使用的是 JetBrains 家族的 IDE(如 IntelliJ IDEA),推荐安装 Kubernetes 插件,它支持 values 变量自动渲染、模板跳转等功能,提升开发效率。
所需数据和工具
- ShenYu Helm Chart 仓库:你可以通过以下命令克隆 ShenYu Helm Chart 仓库:
git clone https://github.com/apache/shenyu-helm-chart.git cd shenyu-helm-chart - Bitnami Helm 仓库:ShenYu Helm Chart 依赖于 Bitnami 仓库中的某些 Chart,因此需要添加 Bitnami 仓库:
helm repo add bitnami https://charts.bitnami.com/bitnami
模型使用步骤
数据预处理方法
在部署 ShenYu 之前,通常需要对 Kubernetes 集群进行一些基本的配置,例如创建命名空间、配置存储类等。这些步骤可以根据你的具体需求进行调整。
模型加载和配置
- 更新依赖:进入
charts/shenyu目录并更新依赖:cd charts/shenyu helm dependency update cd - - 安装 ShenYu:使用 Helm 安装 ShenYu,指定命名空间并创建该命名空间(如果尚未创建):
helm install shenyu-test ./charts/shenyu -n=shenyu --create-namespace
任务执行流程
- 测试部署:在实际部署之前,可以使用
--dry-run --debug选项在本地测试模板的渲染结果,而不真正安装到 Kubernetes 集群中:helm install shenyu-test ./charts/shenyu -n=shenyu --create-namespace --dry-run --debug - 正式部署:确认测试无误后,可以正式部署 ShenYu:
helm install shenyu-test ./charts/shenyu -n=shenyu --create-namespace
结果分析
输出结果的解读
部署成功后,Helm 会输出一系列信息,包括服务的访问地址、Pod 的状态等。你可以通过 kubectl get pods -n shenyu 查看 ShenYu 的 Pod 是否正常运行。
性能评估指标
ShenYu 的性能可以通过多种方式进行评估,例如:
- 响应时间:通过压力测试工具(如 Apache JMeter)测试 API 网关的响应时间。
- 吞吐量:评估在不同负载下的请求处理能力。
- 资源利用率:监控 Kubernetes 集群中 ShenYu 的 CPU 和内存使用情况。
结论
通过使用 ShenYu Helm Chart,你可以轻松地在 Kubernetes 集群中部署和管理 Apache ShenYu API 网关。Helm Chart 不仅简化了部署流程,还提供了灵活的配置选项,使得用户可以根据实际需求进行定制。
在未来的优化中,建议进一步探索 Helm Chart 的高级功能,如自定义模板、自动化测试等,以提升部署的效率和可靠性。
通过本文的指导,相信你已经掌握了如何使用 ShenYu Helm Chart 完成 API 网关的部署和管理任务。希望这一工具能够帮助你在微服务架构中更好地管理和扩展你的应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00