如何使用 ShenYu Helm Chart 部署和管理 Apache ShenYu API 网关
引言
在现代微服务架构中,API 网关扮演着至关重要的角色。它不仅能够统一管理外部请求,还能提供负载均衡、安全认证、流量控制等功能。Apache ShenYu 是一个异步、高性能、跨语言的响应式 API 网关,广泛应用于各种微服务场景中。为了简化 ShenYu 的部署和管理,Apache 社区提供了 Helm Chart 工具,使得用户可以通过 Kubernetes 快速部署和管理 ShenYu。
本文将详细介绍如何使用 ShenYu Helm Chart 完成 Apache ShenYu API 网关的部署和管理任务,帮助读者快速上手并充分利用这一强大的工具。
主体
准备工作
环境配置要求
在开始使用 ShenYu Helm Chart 之前,确保你的环境满足以下要求:
- Kubernetes 集群:你需要一个运行中的 Kubernetes 集群。如果没有,可以通过 Minikube、Kind 或云服务提供商(如 GKE、EKS)快速创建一个本地或云端的 Kubernetes 集群。
- Helm 工具:Helm 是 Kubernetes 的包管理工具,用于管理和部署应用程序。确保你已经安装了 Helm 3.x 版本。
- Kubernetes 插件(可选):如果你使用的是 JetBrains 家族的 IDE(如 IntelliJ IDEA),推荐安装 Kubernetes 插件,它支持 values 变量自动渲染、模板跳转等功能,提升开发效率。
所需数据和工具
- ShenYu Helm Chart 仓库:你可以通过以下命令克隆 ShenYu Helm Chart 仓库:
git clone https://github.com/apache/shenyu-helm-chart.git cd shenyu-helm-chart - Bitnami Helm 仓库:ShenYu Helm Chart 依赖于 Bitnami 仓库中的某些 Chart,因此需要添加 Bitnami 仓库:
helm repo add bitnami https://charts.bitnami.com/bitnami
模型使用步骤
数据预处理方法
在部署 ShenYu 之前,通常需要对 Kubernetes 集群进行一些基本的配置,例如创建命名空间、配置存储类等。这些步骤可以根据你的具体需求进行调整。
模型加载和配置
- 更新依赖:进入
charts/shenyu目录并更新依赖:cd charts/shenyu helm dependency update cd - - 安装 ShenYu:使用 Helm 安装 ShenYu,指定命名空间并创建该命名空间(如果尚未创建):
helm install shenyu-test ./charts/shenyu -n=shenyu --create-namespace
任务执行流程
- 测试部署:在实际部署之前,可以使用
--dry-run --debug选项在本地测试模板的渲染结果,而不真正安装到 Kubernetes 集群中:helm install shenyu-test ./charts/shenyu -n=shenyu --create-namespace --dry-run --debug - 正式部署:确认测试无误后,可以正式部署 ShenYu:
helm install shenyu-test ./charts/shenyu -n=shenyu --create-namespace
结果分析
输出结果的解读
部署成功后,Helm 会输出一系列信息,包括服务的访问地址、Pod 的状态等。你可以通过 kubectl get pods -n shenyu 查看 ShenYu 的 Pod 是否正常运行。
性能评估指标
ShenYu 的性能可以通过多种方式进行评估,例如:
- 响应时间:通过压力测试工具(如 Apache JMeter)测试 API 网关的响应时间。
- 吞吐量:评估在不同负载下的请求处理能力。
- 资源利用率:监控 Kubernetes 集群中 ShenYu 的 CPU 和内存使用情况。
结论
通过使用 ShenYu Helm Chart,你可以轻松地在 Kubernetes 集群中部署和管理 Apache ShenYu API 网关。Helm Chart 不仅简化了部署流程,还提供了灵活的配置选项,使得用户可以根据实际需求进行定制。
在未来的优化中,建议进一步探索 Helm Chart 的高级功能,如自定义模板、自动化测试等,以提升部署的效率和可靠性。
通过本文的指导,相信你已经掌握了如何使用 ShenYu Helm Chart 完成 API 网关的部署和管理任务。希望这一工具能够帮助你在微服务架构中更好地管理和扩展你的应用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00